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Abstract 
 

A methodology, termed plenoptic particle image velocimetry (PIV), was developed and 
demonstrated for the measurement of three-dimensional, three-component velocity fields in 
high-speed turbulent flow fields.  The concept is based on light-field imaging of particles where 
a plenoptic camera is used to measure both the position and angle of light rays scattered by 
particles contained in the flow field.  Tomographic algorithms are applied to plenoptic camera 
data to determine the 3D position of particles contained in the flow field and cross-correlation 
algorithms are used to determine the displacement of particles in two successive images.  A 
prototype camera was designed, built and used to demonstrate the viability of the technique in 
practice.  A synthetic image generation tool was developed to simulate the camera and 
investigate the technique’s accuracy.  Particle positions are found to be accurate within 0.1 mm 
in the lateral directions and within 0.3 mm in the depth direction for a volume with dimensions 
30 mm x 20 mm x 20 mm.  Demonstration experiments included 3D velocity measurements of a 
turbulent boundary layer formed on a wind tunnel wall and a heated, supersonic axisymmetric 
jet.  Overall, plenoptic PIV is shown to be a viable 3D flow measurement technique with its 
main strengths being its compact form factor, simple experimental arrangement, limited need 
for optical access and overall ease of use.  
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I. Introduction  
Particle image Velocimetry (PIV) is a well-established measurement technique used extensively 
to measure the velocity field in a variety of flow environments. As PIV is an image based 
technique, the measurements traditionally have been limited to two components (2C) of 
velocity measured across a two-dimensional (2D) plane. Ideally, however, researchers desire 
three dimensional (3D), three component (3C) velocity field instantaneously, which is important 
for quantifying the topology and extent of coherent flow structures that pervade most 
turbulent flows. Moreover, turbulence is inherently 3D in nature, and a full description requires 
a measurement of the 3D velocity field and derivative quantities such as the stress tensor and 
vorticity vector.  

A. Current 3D PIV techniques 
The desire for 3D/3C velocity measurements has led to a number of efforts being made over 
the years. Advances such as stereoscopic PIV [1] extend traditional PIV to allow 3C 
measurements within a 2D plane, and dual plane stereoscopic PIV [2] applies this technique to 
two planes which allows the derivative quantities of each dimension and each component to be 
calculated. Since these techniques only acquire 3C data within a single plane or two planes, the 
out-of-plane spatial resolution is much lower than the in-plane resolution. For this reason, 
these techniques are not considered truly three dimensional. An additional extension of the 
aforementioned techniques is scanning PIV [3], where high-repetition-rate laser and camera 
systems are used to illuminate and capture images at multiple planes throughout the 
measurement volume. The advantage of these systems are the intuitive setup and data 
processing steps;  however, even with kHz-rate lasers the volume scanning time is often large 
compared to the characteristic timescales of the flow under consideration and prevents the 
technique from being applied to most practical flows. The use of MHz-rate laser systems [4, 5] 
has potential to improve scan rates; however, the complexity and expense of the laser and 
camera systems are currently too prohibitive for broad application.  

Four techniques that have recently received attention for their ability to conduct 3D, 3C 
measurements are defocusing PIV [6],  holographic PIV [7-10], tomographic PIV [11, 12], and 
synthetic aperture PIV [13]. The former is based on the use of specialized apertures near the 
camera lens or multiple cameras which eliminates the ambiguity in particle depth that occurs 
when a particle is not located within the focal plane. Computational algorithms use the 
knowledge of the aperture shape or camera positions to determine the particle position and 
depth. The strength of this technique is the relative simplicity of the equipment required and 
ease of analysis; however, the particle density is significantly limited since the location of 
individual particles must be resolved. Also, in the case of a single camera system, the use of an 
aperture greatly reduces the amount of collected light. The combination of these factors 
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typically restricts the application of the technique to water tunnels where particle density can 
be precisely controlled and relatively large particles can be used.   

Holographic PIV is based on the recording of the interference pattern, or hologram, generated 
by a reference light beam passing through a volume. The volume is then reconstructed by 
illuminating the hologram with the same reference light beam or a synthetic reference beam. 
The resulting volume represents the light intensity field which can then be evaluated to 
determine particle positions or perform cross-correlation. Traditional holographic PIV setups 
utilize specialized holographic films enabling the hologram to be densely sampled and a large 
number of vectors to be generated. At the same time, the use of films is a disadvantage due to 
the time-consuming reconstruction and wet processing steps required. Incidentally, progress 
has been made recently in digital holographic PIV using CCD sensors and digitized 
reconstruction algorithms, most notably a study on wall-bounded turbulence [Sheng_2006]. 
Nevertheless, these techniques are limited to small measurement volumes, while maintaining a 
high optical complexity, thus precluding the wide spread adoption of the technique in the near 
future.  

Tomographic PIV has seen rapid development and maturation, and is now offered as a 
commercially available system; for a comprehensive review of tomographic PIV see Scarano 
[12]. Briefly, in this technique, four or more high-resolution CCD cameras are used to image a 
particle field illuminated by a thick laser sheet. Tomography algorithms are used to reconstruct 
the volume, after which cross-correlation algorithms are used to determine the particle 
displacement. This technique has been demonstrated in a variety of flows including turbulent 
boundary layers [14] cylinder wakes [15], and shock-wave/turbulent boundary layer 
interactions [16]. It has also been adapted to kHz rates using high-speed cameras for 
aeroacoustic studies (see Violato et al. [17, 18]. Tomo-PIV, however, has some rather significant 
restrictions that limit its use in many situations. These include the relatively thin (∼10 mm 
depth) volume over which a measurement can typically be made, errors in the volume 
reconstruction process due to the limited number of viewing angles (e.g. the generation of 
image artifacts known as ghost particles), limited particle number density, complexity of the 
experimental arrangement, and the expense of the overall system. Nonetheless, tomo-PIV’s 
success in obtaining 3D, 3C velocity measurements in a multitude of facilities has revitalized 
recent research in 3D flow diagnostics. 

Synthetic aperture PIV (SAPIV) is another multi-camera 3D PIV techniques described by Belden 
et al. [13]. The technique uses a large camera array (eight or more cameras) to capture multiple 
views of the measurement volume simultaneously. In contrast to tomo-PIV, the map-shift-
average algorithm is used to construct synthetically refocused images from the individual views 
by projecting each view onto a common focal surface. In the resulting image, particles that lie 
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on the focal surface are sharp and in-focus, whereas particles off of the surface are blurred. By 
thresholding the refocused images, the 3D intensity field is compiled and used as the input to 
cross-correlation algorithms. The technique is limited by many of the same restrictions as tomo-
PIV and uses an even greater number of cameras.  

B. Light Field Imaging 
Light field imaging encompasses methods for measuring the intensity and direction of light 
propagating through space, which within the past decade has gained attention due to advances 
in camera technology and computing resources. The field of light field imaging has experienced 
significant growth over the last couple decades and has evolved into a rich and active area of 
research. In this section, we attempt to provide a basic overview of the history and 
fundamental concepts of light field imaging is given; however, the reader is encouraged to 
consult other sources, additional information in available in the works of such as Adelson et al. 
[19, 20], Levoy et al. [21-23], Ng et al. [24], and Georgiev [25-27] for more detailed information.  

Historically, the notion of a light field is over a century old as outlined in Lippmann [28]. The 
modern definition of a light field comes from Adelson and Bergen [19] where the intensity and 
direction of light rays is parameterized by the plenoptic function.  Each light ray is represented 
by its 3D position in space (𝑥, 𝑦, 𝑧) and its angle of propagation (𝜃, 𝜙), thus forming a 5D 
function1 representing all light rays traveling through space. Assuming constant intensity, or 
more precisely irradiance, of a light ray along its path of propagation, the plenoptic function is 
typically reduced to a 4D function, denoted as 𝐿𝐹(𝑥, 𝑦, 𝜃, 𝜙). In this context, a conventional 
photograph represents a 2D projection of the 4D light field.  

Adelson and Wang [20] utilized this concept to estimate the depth and shape of objects by 
measuring the plenoptic function with a single camera, referred to as a plenoptic camera. The 
camera utilized a specialized optical design to encode both the spatial (x,y) and angular 
(theta,phi) components of the light field onto a 2D sensor. In contrast to a conventional camera 
that collects light across a range of input angles and focuses all angles to individual spatial 
locations on the sensor, the plenoptic camera focuses all angles onto an array of pinholes or 
microlenses.  Each microlens covers a small number of pixels on the image sensor and can be 
thought of as forming a macropixel. In this configuration, the microlenses capture the spatial 
information contained in the light field, while the pixels contained under the microlens record 
the angular distribution. This relationship will be described in greater detail in the following 
section. Adelson and Wang’s version of the plenoptic camera utilized a 500 x 500 pixel CCD with 
a microlens array of 100 x 100 microlenses. This results in a camera with a spatial resolution of 
100 x 100 pixels and an angular sampling of 5 x 5.  

1 In a general sense, one can also include the wavelength, polarization and time dependency of light in space such 
that the full light field may be considered as an 8D function.  This is known as the radiance function. 
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As camera and microlens technology has improved the interest in plenoptic cameras has grown. 
Ng et al. [24]  presented a hand-held plenoptic camera for digital photography. The camera 
consisted of a modified DSLR with a 16 megapixel image sensor and a microlens array of 296 x 
296 microlenses. Ng’s research focused on computationally rendering conventional 2D images 
from the light field data collected by the plenoptic camera in a single snapshot. They 
demonstrated the ability to computationally generate, after the fact, photographs with a 
different focal position or a shift in the perspective. Examples of refocused images acquired 
with our plenoptic camera (described later) are shown in Figure 1. The three images represent 
the focus shifted toward the camera, stationary, and shifted away from the camera relative to 
the nominal focal plane. In Figure 2, the perspective of the observer is shifted with one image 
showing a “left” view and the other showing a “right” view. These images serve to illustrate the 
unique information obtained by a plenoptic camera and how it can be used for computational 
imaging.  Recently, commercial variants of plenoptic cameras have become available. For 
consumer photography Lytro (Founded by Ng) offers a point-and-shoot plenoptic camera with 
built in refocusing capabilities. In the field of machine vision, Raytrix also offers a variant of 
plenoptic camera technology that offers a similar ability to change the focus or perspective of 
an image after the fact .  

   
a) Near-field b) In-focus c) Far-field 

Figure 1: Computationally refocused images generated from a single exposure, focused: a) on a 
figure that is in front of the nominal focal plane, b) at the nominal focal plane, and c) on figure 
behind the nominal focal plane.   
 

  
a) Left side of aperture b) Right side of aperture 
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Figure 2: Computationally rendered image where the viewpoint of the observer has been 
changed.  
 

Capturing and altering the light field is not limited to using a plenoptic camera. Levoy [21] 
describes several methods of obtaining the light field in order to computational generate an 
image or rendering of an object. One method places the object of interest at the center of a 
sphere, then, using a spherical gantry, thousands of images can be taken at different positions 
along the sphere’s surface.  The resulting collection of 2D images taken at discrete angles is a 
representation of the 4D light field. Another method is to mount multiple cameras, Levoy [29] 
used 48, in an array allowing an instantaneous light field to be acquired. These techniques 
utilize multiple 2D images to build the 4D light field. In this vein, we note that defocus PIV, 
tomo-PIV and SAPIV are implicitly measuring the light field, albeit with relatively low angular 
resolution. In contrast, the plenoptic camera directly captures the 4D light field on a single 
image sensor in a single snapshot, with a fairly dense angular sampling over a limited angular 
range.  

More recently, Levoy et al. [23] developed a light field microscope based on the plenoptic 
camera. The fundamental principle remains the same; however, their work focused on 
additional challenges associated with microscopic imaging. They consider the effect of wave 
optics and diffraction in a microscopic environment whereas geometrical optics is sufficient for 
macroscopic imaging. In addition, a typical microscope objective functions differently than a 
conventional camera lens, producing orthographic rather than perspective views. Next, most 
objects in microscope images are partially transparent whereas the previous effort had focused 
on scenes with opaque objects.  

The objective of this work is to utilize the information obtained by a plenoptic camera about 
the light field to measure 3D particle fields, which have direct applicability to 3D PTV and PIV. 
This paper first describes the design and construction of a prototype plenoptic camera and the 
process for building the light field from the data obtained by the camera. The geometry 
describing the 4D light field is introduced, and its relationship to tomographic algorithms is 
explored. In particular, the structure of the tomographic weighting matrix for plenoptic 
cameras is detailed. The 4D light field is then coupled to tomographic algorithms to reconstruct 
a volume of particles. In so doing, the unique relationship between the image and the volume, 
known as the weighting matrix, is defined. The weighting matrix is shown to be an evolutionary 
step forward from the computational rendering algorithms. The algorithms are tested 
synthetically to determine their performance in reconstruction as well as their accuracy in 
obtaining a velocity field. Finally, experimental results are presented as a preliminary gage of 
the performance of plenoptic PIV in a practical setting.   
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II. The Plenoptic Camera 
Figure 3 schematically illustrates the fundamental concept of a plenoptic camera by contrasting 
it with a conventional camera. The function of a plenoptic camera is to measure both the 
position and angle of light rays collected by an imaging lens. This is in contrast to a conventional 
camera which records only spatial information about incident light rays through integration of 
the angular information at the sensor plane. In both cases, geometric optics can be used to map 
an arbitrary location (𝑥, 𝑦, 𝑧) in object space to a corresponding location on the image 
plane (𝑥𝑝, 𝑦𝑝). In a conventional camera (Fig 3a), there is no mechanism for discriminating the 
angle of the light incident on a pixel; therefore, all angles are integrated for each spatial 
position and the angular information is lost. The separation between the imaging lens and 
sensor plane is typically chosen, via the thin lens equation, such that all rays converge to the 
same point leading to an in-focus image. If the sensor plane is not coincident with the image 
plane, the image will be out-of-focus with point sources on the world focal plane forming blur 
spots that are dependent on the size of the lens aperture and the position of the image sensor. 
This leads to a loss of spatial resolution in the image and the familiar concept of depth-of-field 
where reducing the lens aperture leads to increased depth of field. 

In a plenoptic camera, a microlens array is positioned at the image plane with the image sensor 
shifted back by one the microlens focal length. The function of the microlens array is to direct 
light incident on the microlens at a particular angle onto one of the pixels located behind the 
microlens. This is depicted in Figure 3b, which shows the point-of-view of a single pixel. 
Neighboring pixels contained under the same microlens are exposed to light at different 
incident angles as shown in Figure 3c where each color represents a different subset of angles 
captured by each pixel. As such, each microlens in the array determines the position (𝑥, 𝑦) of 
the light rays collected by the main lens and each pixel determines the angle (𝜃, 𝜙) of light rays 
striking that particular microlens. Alternatively, each microlens can be thought of as forming a 
micro-image of the main lens aperture. By considering the full array of micro-images formed 
under each microlens, the resulting 2D image captured by the image sensor represents a 
multiplexed sampling of the 4D light field captured by the camera lens.  
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a) Conventional Camera b) Single pixel’s line of sight c) All pixel’s line of sight 
Figure 3: Illustration of the differences between a conventional camera and a plenoptic camera 
in how they sample the light field. 
 

A. Prototype Camera 
A prototype plenoptic camera has been constructed using an Imperx Bobcat ICL-B4820 camera 
equipped with a Kodak KAI-16000 interline CCD image sensor. The choice of an interline CCD is 
motivated by the need to perform a double exposure similar to traditional PIV cameras. Figure 
4a shows a photo of the camera without a lens attached, and a U.S. quarter to provide scale. 
Immediately the compact design of the camera is evident, compared to the complex 
arrangements required for tomographic PIV or synthetic aperture PIV.   

The microlens array was manufactured by Adaptive Optics Associates and mounted to the 
camera with a custom designed provided by Light Capture, Inc. The mount was manufactured 
in-house and allows for precise positioning of the microlens array at a distance of the microlens 
focal length (500 microns) from the CCD sensor. It consists of a series of positioning screws to 
adjust the height of the microlens array above the sensor and to adjust the orientation of the 
array with respect to the sensor.  An exploded view is shown in Figure 4b. To align the camera, 
we follow a similar procedure to that outlined in Ng et al. [24]  The main lens of the camera is 
removed and the microlens and image sensor are exposed to an approximately collimated 
beam of light (a point source at a distance).  In this configuration, each microlens forms a small 
spot on the image sensor with a diameter determined by it distance from the image sensor.  For 
proper alignment (image sensor at the focal plane of the microlenses), the microlens mount is 
adjusted until the spot size reaches a minimum value.   To determine this, the image captured 
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by the camera is displayed on a monitor while adjustments are made to the mount.  This is 
accomplished in a few iterations.  The accuracy of the alignment procedure is estimated to be ~ 
30 microns.  The full parameter list for the CCD and microlens array are shown in Table 1.  

 

  
a) Imperx camera which is 
modified to become a plenoptic 
camera 

b) Exploded view of camera and microlens array 
mounting apparatus. 

Figure 4: Prototype plenoptic camera 
 

 

  

 
 

Table 1: Prototype plenoptic camera parameters 

Parameter Symbol Value 
Microlens Pitch 𝑝𝑙 0.125 mm 
Microlens Focal Length 𝑓𝑙  0.5 mm 
Number of Microlenses: X-direction 𝑛𝑙𝑥 289 
Number of Microlenses: Y-direction 𝑛𝑙𝑦 193 
Pixel Pitch 𝑝𝑝 0.0074 mm 
Number of Pixels: X-direction 𝑛𝑝𝑥 4904 
Number of Pixels: Y-direction 𝑛𝑝𝑦 3280 

 

As an initial test of the camera, a simple scene was setup using Lego Star Wars mini-figures. 
Three objects were setup, one in the foreground (storm trooper), one in focus (Darth Vader), 
and one in the background (C-3PO) all spaced approximately 25 mm apart in depth.  A raw 
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image of this scene is shown in Figure 5a. From the raw image it is hard to discern the 
differences from a conventional photograph as the signal contained under each microlens is 
naturally integrated by the eye to form an apparent image with a narrow depth-of-field. A close 
look at the region inside the green square, shown in Figure 5b, shows the individual microlens 
images from which the angular information can be extracted.  

 

  
a) Raw image taken with plenoptic camera b) Close up of raw image, showing 

individual microlenses 
Figure 5: Raw image taken with prototype plenoptic camera. 
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III. Light Field Rendering 
A. Two-plane parameterization 

The preceding discussion parameterizes a light ray by its position on the world focal plane and 
angle of propagation. An alternative is the two-plane parameterization developed by Levoy 
[21]. Figure 6a describes a light ray by its position (𝑥, 𝑦, 𝑧) and its angle of propagation (𝜃, 𝜙). 
Figure 6b defines a light ray be specifying its point of intersection on two planes separated by a 
known distance.  These points of intersection are labeled (𝑥, 𝑦) and (𝑢, 𝑣) and are equivalent to 
the other representations of the light field.  

 

 
 

a) Light ray parameterized by its position and 
angle of propagation. Adapted from Levoy [21] 

b) Light ray parameterized by a pair of points 
on two planes. Adapted from Levoy [21]. 

 
Figure 6: Different representations of a light ray and the final representation used for the 
plenoptic camera 
 

The plenoptic camera lends itself to the two-plane parameterization due to it inherently having 
two physical planes involved in the light-capture process: the microlens plane and the aperture 
plane, separated by a fixed distance, 𝑠𝑖. As discussed previously, the microlenses discretize the 
spatial location of all incoming light rays, while the aperture fixes the domain over which the 
angular information is captured.  Therefore, each pixel of the image sensor is associated with a 
discretized point on the microlens plane (x,y coordinate) as well as a point on the aperture 
plane (the u,v coordinate) separated by the image distance of the main lens. 

B. Building the Light Field 
The recorded light field can be fully described through determination of the (𝑥, 𝑦, 𝑢, 𝑣) position 
of each sensor pixel. For experimentally obtained images, the exact positions of the microlenses 
relative to the image sensor are not known. A calibration procedure was developed to 
determine the positions of the microlenses, and the pixels beneath them. A calibration image of 
a diffuse illuminated surface is acquired with the aperture of the camera minimized (i.e. 
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increasing the f-stop to its maximum value). Note that the calibration is defined for a specific 
value of the main lens focus; variations in the main lens focus lead to a shift of the position of 
the microlens images on the sensor. A sample calibration image is shown in Figure 7a. The 
white dots are the centers of the reduced aperture image formed by each microlens. In terms 
of the two-plane parameterization these dots represent the center of the 
aperture (𝑥, 𝑦, 𝑢0, 𝑣0). The location of each microlens is roughly estimated using a 2-D peak 
finder and refined to sub-pixel accuracy by calculating the 2-D intensity centroid. This is 
indicated in Figure 7Error! Reference source not found.b where the centroid is shown as a 
green "x". 
 

  
a) Subset of calibration image b) Calibration centroid fit 

Figure 7: Example calibration (synthetic) image and corresponding centroid fit. 
 

The calibration procedure then uses a priori knowledge of the microlens array, specifically we 
assume that they are arranged in a rectilinear fashion with a pitch of 125 microns. According to 
the manufacturer provided specifications, the pitch of the microlens is subject to a +/- 3% non-
cumulative error.  Based on this assumption, the (𝑥, 𝑦) values for each pixel are assigned as 
corresponding to the position of the microlens in front of them. To determine the angular 
coordinates (u,v) for each pixel, the distance between the microlens array and main imaging 
lens, 𝑠𝑖, must be determined. This is determined by taking an image of a scale at the nominal 
focal plane, allowing for the calculation of the nominal magnification of the system. From the 
definition of magnification and the focal length of the main lens, the distance 𝑠𝑖 can be 
determined. The magnification is used to convert the pixel coordinates of the microlens images 
to physical coordinates on the main lens aperture plane.  In pixel coordinates, the 𝑢 and 𝑣 
values are taken as the distance between the pixel and the center of the microlens. This 
expression is given for the 𝑢 component by 
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𝑢𝑖 = (𝑥 − 𝑥𝑖)
𝑝𝑝∙𝑠𝑖
𝑓𝑙

             (1) 

where the subscript i represents the current pixel. A similar expression using y values is used for 
the v component. In this fashion, each pixel on the camera is assigned a unique (𝑥, 𝑦, 𝑢, 𝑣) 
coordinate and the intensity of the light recorded at the pixel value corresponds to the 
irradiance of the light ray defined by the (x,y,u,v) coordinate. 

 

C. Computational Refocusing 
An introduction into light field manipulation is rendering a focused image of the light field at a 
shifted focal plane from the focal plane in which the image was originally acquired. This 
process, termed computational refocusing, has been adapted from the work of Ng [Ng] and 
relies on the two-plane parameterization of the light field.  

Rendering a 2D image from the 4D light field involves selecting a subset of rays from the 
complete 4D light field and integrating the angular dimensions for a pre-determined focal 
plane. Using the two plane approach an interpolation can be applied to re-sample the light field 
inside the camera at a virtual image sensor.  An illustration of the geometry used in the 
refocusing process is shown in Figure 8. 

 
Figure 8: Illustration of interpolation for refocusing using the two-plane parameterization. 
Adapted from Ng [Ng] 
 

15 
 



To generate a refocused image, tthe light field is resampled at a virtual image sensor 𝑥′ located 
at a distance 𝑠𝑖′ from the aperture plane. The virtual light field 𝐿𝐹′  can be written in terms of the 
original light field 𝐿𝐹 through a linear projection operator, shown graphically in Figure 8 where 
the desired virtual light field being resampled at (𝑥′, 𝑢) is projected onto the original sensor 
yielding the point (𝑥, 𝑢) in the original light field. Mathematically, the location of this projection 
from 𝑥′ onto 𝑥 for a single 𝑢 value, denoted 𝑥𝑓𝑖𝑛𝑑 is given by 

𝑥𝑓𝑖𝑛𝑑 = 𝑢 �1 − 1
𝛼
� + 𝑥′

𝛼
            

(2) 

Where 𝛼 = 𝑠𝑖′/𝑠𝑖. Substituting 𝑥𝑓𝑖𝑛𝑑 into the plenoptic function results in an equation for the 
light field located at a virtual image sensor (𝑥′, 𝑦′) expressed in terms of the original light field, 
and is given by 

𝐿𝐹′ (𝑥′, 𝑦′, 𝑢, 𝑣) = 𝐿𝐹 �𝑢 �1 − 1
𝛼
� + 𝑥′

𝛼
, 𝑣 �1 − 1

𝛼
� + 𝑦′

𝛼
, 𝑢, 𝑣�       (3) 

  

To generate a refocused image at the synthetic image sensor, the angular information 
contained in the light field is integrated such that the final value for each microlens is the sum 
of all its angles. This is expressed in equation form by 

𝐼(𝑥′, 𝑦′) = ∬𝐿𝐹 �𝑢 �1 − 1
𝛼
� + 𝑥′

𝛼
, 𝑣 �1 − 1

𝛼
� + 𝑦′

𝛼
, 𝑢, 𝑣� 𝑑𝑢 𝑑𝑣    (4) 

 

In equation 4, the light field is queried at fractional positions. Therefore, a 4D interpolation 
scheme (in this work, linear interpolation) is required to determine the contribution of each 
pixel. An example of the refocusing algorithm applied to actual image data was shown in Figure 
1.  

D. Perspective Shift 
Another benefit of capturing the entire light field is the ability to render scenes from a different 
angle than the optical axis of the system. These images are generated by only considering a 
single angle (i.e. aperture position) in the light field. Similar to the refocused image, a single 
value is used to represent a microlens however, instead of summing the angular information 
into a single value, a specific angle (𝑢, 𝑣) is chosen and that value is used. As the u,v plane 
corresponds to the aperture plane, we can generate perspectives where the viewer is located 
at different points across the aperture. Some sample images of this effect are shown in Figure 
2.   
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IV. Synthetic Image Generation 
Particle imaging is a unique imaging scenario that to date has not been considered by 
researchers in plenoptic photography. To develop this technique synthetic data is needed to 
test the overall accuracy of the algorithm. To do this a plenoptic camera simulator has been 
developed and is detailed herein. 

A. Overview 
The generation of synthetic plenoptic camera images from given particle positions in object 
space is nontrivial due to the complex optical configuration of the camera; the mapping 
function from object space is not only nonlinear, but exhibits step-function behavior as rays 
impinge on different microlenses. Therefore, a ray-tracing approach is adopted, where linear 
(Gaussian) optics is used to geometrically trace the path of light through space and the various 
optical elements that comprise the plenoptic camera. Briefly, ray tracing is a rendering 
technique in which a large number of light rays from a scene are used to form an image at 
arbitrary locations or viewpoints. Rays of light are initialized at the light source by specifying an 
initial position and direction.  Ray transfer matrices are used to simulate optical elements and 
the propagation of light through free space [30]. The intersection that each ray makes with a 
sensor plane or designated viewpoint defines the generated image. An extension of Gaussian 
optics, known as affine optics (Georgeiv and Intwala [Georgiev,Intwala]), was developed to 
extend the concepts to light field imaging.  

The simulator is configured via the variables and relationships as defined in Figure 9. All 
parameters are measured relative to the optical axis in both the 𝑥 and 𝑦 directions. The origin 
of the 𝑧 axis is defined at the nominal focal plane of the camera with positive z pointing away 
from the camera.  

 
Figure 9: Optical configuration of the plenoptic camera. 

Particle positions are defined by their position relative to the center of a volume positioned at 
the nominal focal plane of the main lens, where the main lens is modeled as a thin lens with 
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focal length, 𝑓𝑚, and an aperture with diameter, 𝑝𝑚. Similarly, the microlenses are defined by 
their focal length, 𝑓𝑙, and pitch, 𝑝𝑙. The physical image sensor is defined by a pixel pitch, 𝑝𝑝, 
which denotes the size of a pixel. The distances separating the elements are the object 
distance, 𝑠𝑜, which separates the focal plane of the camera and the main lens and the image 
distance, 𝑠𝑖, which separates the main lens and the microlens array. The image and object 
distances are related by the thin lens equation, shown in equation 3, which makes the 
assumption that the thickness of the lens is negligible relative to the length of the optical 
system itself.  

1
𝑠𝑖

+ 1
𝑠𝑜

= 1
𝑓𝑚

              (5) 

We note that modern camera lenses, which typically contain multiple lens elements, can be 
approximated by a thin lens where 𝑠𝑖 and 𝑠𝑜 are measured relative to the principle planes of 
the lens. While not considered here, the present framework also allows for more detailed 
modeling of these additional lens elements. 𝑠𝑖 and 𝑠𝑜 are related to the magnification of the 
imaging system through equation 6. 

𝑀 =  − ℎ𝑖
ℎ𝑜

= − 𝑠𝑖
𝑠𝑜

            (6) 

In combination with eq. 5, this equation allows for the calculation of 𝑠𝑖 and 𝑠𝑜 knowing only the 
magnification, which can be obtained by imaging a ruler, and focal length of the main lens.  

The optical parameters are now divided into two categories: input and fixed parameters. The 
former are adapted for specific experimental conditions: main lens focal length, aperture 
diameter, and magnification. The object and image distances are a result of the the main lens 
focal length and magnification. The fixed parameters are set through hardware configuration 
and cannot be modified after assembly:  the microlens pitch, microlens focal length, pixel pitch, 
and the number of pixels.  

A constraint on the input parameters is a condition of f-number matching between the main 
lens and the microlenses. It was recognized by Ng et al. [Ng] that the image-side f-number of 
the main lens must be equal to or greater than the f-number of the microlenses. This condition 
prevents any overlap between adjacent microlens images which would otherwise cause 
ambiguity in the light field parameterization. The image-side f-number, as described by Smith 
[smith_2007], is shown in equation 5 where, 𝑓 is the focal length, and 𝑑 is the diameter of the 
lens aperture.  

(𝑓/#)𝑚 = (𝑓/#)𝑙/(1 − 𝑀)           (7) 
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In this work, we simulate a nominal 1:1 imaging magnification such that ℎ𝑖 = ℎ𝑜 and 𝑀 = −1. 
The parameters used in the present simulation are shown in Table 1.  

Note that the achieveable parallax shift is limited by the size of the lens aperture used to form 
the image and the distance of the object from the main lens. The aperture size is limited by f-
number matching condition; f/4 microlenses are used in this work, which allow for a maximum 
main lens aperture of f/2 at 1:1 imaging conditions.   

Table 2: Variable parameters for plenoptic camera simulation. 

Parameter Symbol Value 
Main Lens Focal Length 𝑓𝑚 50 mm 
Main Lens F-number (𝑓/#)𝑚 2 
Magnification 𝑀 -1 
 

The process of the ray-tracing simulation is shown schematically in Figure 9. For each 
synthetically generated particle, 10,000 rays are used to simulate the light emanating from that 
point. The initial angle of each light ray is randomized between 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥, which are 
determined based on the distance to the lens and the aperture size. In Figure 9 the maximum 
angles are shown as the outermost blue rays, and the expressions for the maximum and 
minimum angles are given. From this initial state the ray is propagated to the main lens using 
the first ray-transfer matrix, labeled as 1. From there the use of a lens ray-trace matrix, number 
2, is used to model the main lens, then the light ray is propagated to the microlens array, using 
matrix 3. Once at the microlens array, the individual microlens that the ray has struck is 
determined. From there using the affine optics adaptation of the lens ray-trace matrix is used 
to model the microlens, as shown in matrix 4, which also includes a matrix addition term. 
Finally, the ray is propagated to the image sensor using the final matrix, 5. Once at the image 
sensor the pixel which the ray hits is determined and its value is increased. More details about 
the simulator can be found in Lynch [31]. 
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Figure 9: Schematic of ray-tracing process for a plenoptic camera. 

It should be noted that the simulator takes into account diffraction effects by randomizing the 
spatial coordinate of each light ray at the microlens plane and sensor plane through a normally 
distributed random number generator, set in a manner that the standard deviation is equal to 
the diffraction-limited spot size. Analysis at the condition presented here indicates that 
diffraction does not result in a substantial change in the simulator results. This is due to the 
large f-number of the main lens and the microlenses where the diffraction limited spot size is 
smaller than the characteristic spatial dimensions (microlens and pixel pitch) of the camera.  

B. 1D Simulations 
Figure 10 shows the simulation of two particles, one displaced by 1 mm behind the nominal 
focal plane (Fig. 10a) and one displaced 1 mm in front of the nominal focal plane (Fig. 10b). In 
Figure 10a, all of the light rays converge in front of the microlens plane in a manner which is 
consistent with the image plane moving closer to the main lens as the object plane moves 
further away. After passing through this focal point, the rays spread out and intersect several 
microlenses. Depending on the incident angle, the microlens redirect the incident light to 
different pixels on the image sensor forming a unique image pattern corresponding to the 
particle positions. Conversely, in Figure 10b, the light rays are intersected by the microlens 
array prior to reaching their focal point forming a distinctly different image pattern.  
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a) dz = +1 mm b) dz = -1 mm 

Figure 10: 1D simulations at various particle depths. 1 out of every 100 rays shown. Integrated 
signal shown in blue.  

C. 2D Simulations 
The image provided is a subset of a full image, whose size is set in accordance with the KAI‐
16000 image sensor to 4872 x 3248 pixels. This image was generated using a particle volume 
ranging from 𝑧 =  −10 𝑚𝑚 to +10 𝑚𝑚 and a particle density of 0.001 particles per pixel (ppp). 
For the plenoptic camera the calculation of ppp is simply the number of particles divided the 
number of pixels on the raw image sensor (4872 x 3248).   Upon visual inspection of the image, 
particles that lie near the focal plane produce nearly circular images that stand out from the 
rest of the field. The remaining particle images are distributed across multiple microlenses and 
are difficult to distinguish visually.  
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V. Tomographic Reconstruction 
Tomographic PIV is based on the reconstruction of a volume of particles based on a limited number of 2-
D projections of the volume captured by independent cameras. Plenoptic PIV behaves in a similar 
fashion; a volume of particles is reconstructed by a dense collection of views given by the multiple 
samples of the angular distribution of light at a position. First, an overview of the MART procedure is 
given, followed by details necessary for its application to plenoptic data sets.  

A. Basic Concept 
 Tomographic reconstruction of particle fields in fluid measurement is unique in the field of 
tomography due to the high-frequency content of the reconstructed signal and the limited 
number of views available. An overview of tomographic algorithms for particle imaging is given 
by Elsinga [11]. In particular, algebraic reconstruction methods (see Herman and Lent [32]) are 
well-suited for reconstruction given the above constraints. These methods form a linear system 
of equations relating the intensity distribution within the reconstructed volume to the 
projections formed on the camera(s). Thus an inverse problem is formed, where the projections 
are known, however the reconstructed volume is unknown. In general, the linear system is 
highly underdetermined, and therefore requires iterative, approximate solution methods. 

The 3D volume to be reconstructed is discretized into cubic voxel (volume equivalent of a pixel) 
elements, with intensity 𝐸(𝑥, 𝑦, 𝑧). The size of the voxel was chosen to be similar to that of a 
microlens, since they nominally govern the spatial resolution of a plenoptic camera. The 
problem can be stated as the projection of the volumetric intensity distribution 𝐸(𝑥, 𝑦, 𝑧) onto 
a pixel located at (𝑥𝑖, 𝑦𝑖) yields the known intensity of that pixel 𝐼(𝑥𝑖, 𝑦𝑖). In equation form this 
is given by  

∑ 𝑤𝑖,𝑗𝐸�𝑥𝑗, 𝑦𝑗, 𝑧𝑗� = 𝐼(𝑥𝑖, 𝑦𝑖)   𝑗∈𝑁𝑖           (8) 

where 𝑁𝑖 represents the number of voxels in the line-of-sight of the ith pixel. The weighting 
function 𝑤𝑖,𝑗 describes the relationship between the recorded image (ith pixel) and the 3D 
volume of interest (jth voxel), and is detailed in the next section. In order to solve this set of 
equations, iterative techniques have been developed that update the current solution for 𝐸 
based on the previous solution. For additive techniques such as the algebraic reconstruction 
technique (ART [32]) the update is based on the difference between the image intensity data 
and the projection of the volume such that when they are equal the update added to the 
solution is zero. For multiplicative techniques such as the multiplicative algebraic 
reconstruction technique (MART ) the update is based on the ratio of the image intensity data 
to the projection of the volume such that when they are equal the update multiplied to the 
solution is unity.  
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The algorithm used in this work is the standard MART algorithm, which was shown by Elsinga to 

work very well in tomo-PIV.  Starting from an initial guess of the volume 𝐸�𝑥𝑗, 𝑦𝑗, 𝑧𝑗�
0

= 1 
MART is updated via the following expression 

𝐸(𝑥𝑗, 𝑦𝑗, 𝑧𝑗) 𝑘+1 = 𝐸�𝑥𝑗, 𝑦𝑗, 𝑧𝑗�
𝑘
� 𝐼(𝑥𝑖,𝑦𝑖)

∑ 𝑤𝑖,𝑗𝐸�𝑥𝑗,𝑦𝑗,𝑧𝑗�
𝑘

𝑗∈𝑁𝑗  

�
𝜇𝑤𝑖,𝑗

       (9) 

Where k is the number of iterations and 𝜇 is a relaxation parameter which must be less than or 
equal to one. The exponent restricts updates to parts of the volume affected by the 𝑖th pixel by 
raising the argument to 0, therefore multiplying the current voxel by 1, if the voxel is not 
affected by the 𝑖th pixel.   

B. Calculation of Weighting Function 
In tomo-PIV, the weighting function is calculated based on a projection of a pixel through the 
volume. The weighting coefficents are calculated by the integral of the pixel line-of-sight and a 
voxel element (typically via a intersection of a cylinder and sphere; for a review of methods see 
Scarano [12]). This definition requires that the line-of-sight diameter of the pixel is constant 
along the volume depth, i.e., the entire volume must lie within the depth of focus of the optical 
system. An alternative view is that the optical point spread function (PSF) for a tomographic-PIV 
reconstruction must not exceed the particle image diameter over the illuminated depth.  

The plenoptic camera has a more complex PSF due to the microlens arrangement; therefore, 
this method of calculating the weights is not applicable. A new method for determining the 
weighting function is proposed to take into account the plenoptic PSF. The approach is based 
on interpolating a distribution of light rays passing through a virtual point within image space.  

The method begins by defining the discretized volume in object space that we wish to 
reconstruct. In this work, we assume a conventional Cartesian grid with uniform spacing 
between all volume elements. The coordinates in object space are then transformed into image 
space where the light field was measured. Each voxel element (𝑥𝑜, 𝑦𝑜, 𝑧𝑜), with the subscript o 
referring to a location in object space, uses the following transformation for z: 

𝑠𝑜′ = 𝑠𝑜 + 𝑧𝑜              (10) 

𝑠𝑖′ = 𝑓𝑚 ∗ 𝑠𝑜′ /(𝑠𝑜′ − 𝑓𝑚)          
 (11) 

𝛼 = 𝑠𝑖′/𝑠𝑖            (12) 

where 𝑠𝑜′  is the distance from the main lens to the voxel and 𝑠𝑖′ is its image space counterpart, 
calculated using the thin lens equation. The term 𝛼, the ratio of the voxel’s image space 
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location to the nominal image distance, is used instead of the actual location in image space. 
For x and y the following transformations are used:  

𝑀′ =  −𝑠𝑖′/𝑠𝑜′             (13) 

𝑥′ = 𝑥𝑜 ∗ 𝑀′            (14) 

𝑦′ = 𝑦𝑜 ∗ 𝑀′             (15) 

where 𝑀′ is the magnification of the voxel. The result is a voxel in image space whose position 
is given by (𝑥′, 𝑦′, 𝛼).  

Each slice of the volume in the depth direction can be treated like a focal plane for refocusing, 
except instead of considering the distribution of rays as converging toward a voxel, they are 
considered as emanating away from the voxel towards the plenoptic camera. As shown in 
Figure 12, a distribution of rays passing through a particular voxel, denoted by x’, are defined by 
first specifying their position on the (𝑢, 𝑣) plane.The number of rays intersecting the (u,v) plane 
and projected through the volume is chosen such that the resulting spacing at the x-plane is 
less than one microlens dimension. For x’ planes that are relatively distant from the x-plane, 
this results in an oversampling of the (u,v) plane relative to the nominal angular sampling rate 
(i.e. the number of pixels under each microlens) of the camera. Additional oversampling on the 
(u,v) plane results in additional computational expense, but does not contribute additional 
information to the calculation of the weighing matrix.  

 

Figure 12: Demonstration of two-plane projection of x’ and u in two dimensions. 
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In contrast to refocusing, where we are interested in interpolating the light ray’s intensity 
through a particular voxel, we utilize the interpolation coefficients themselves as a measure of 
the weighting between the voxel and the image pixels. For a single light ray passing through a 
voxel (𝑥2, 𝑦2, 𝑢2, 𝑣2), where the subscript 2 refers to the point of interpolation in interpolation 
space, there are sixteen coefficients that are used to interpolate the irradiance of the light ray 
from the measured light field. These coefficients can be more easily visualized by considering 
the interpolation process as a series of two-dimensional interpolations, one for each plane. 
First, we consider the intersection of the light ray with the (𝑥, 𝑦) plane to determine the 
distribution of the light ray on the nearest four microlenses. This is represented schematically in 
Figure 13a where the green “x” is the point where the projection strikes the microlens plane, 
the blue dots represent the center of each microlens, and the shaded area enclosed by the 
dotted lines is the interpolation domain. In this representation, each ray is implicitly assumed to 
have a finite width equal to the size of one microlens, which is consistent with the physical 
function of the microlenses within the camera. Expressing (𝑥2, 𝑦2) in terms of microlens 
coordinates yields the following relations for the surrounding microlens positions. 

𝑥0 = floor(𝑥2)    𝑥1 = ceil(𝑥2)       (16) 

 𝑦0 = floor(𝑦2)     𝑦1 = ceil(𝑦2)      

This allows the relative position of the light ray to the neighboring microlens centers to be 
easily calculated, and it has the benefit of auto-normalizing the coefficient since the separation 
is equal to one (i.e. ceil(𝑥2) – floor(𝑥2) = 1). Once the interpolation coefficient for the four 
microlenses have been calculated the 𝑢, 𝑣 interpolation can take place. Figure 13b shows the 
discretization of the aperture plane as viewed from the pixel behind each microlens (𝑥1, 𝑦0). 
The green “x” refers to where the projection strikes the aperture plane, in this case one of the 
designated plaid (𝑢, 𝑣) values. The red dots represent the centers of each (𝑢, 𝑣) location on the 
aperture. As with the (𝑥, 𝑦) interpolation (𝑢2, 𝑣2) is expressed in terms of pseudo-pixel 
coordinates. The surrounding pixel values are given by  

𝑢0 = floor(𝑢2)    𝑥1 = ceil(𝑥2)           (17) 

 𝑢0 = floor(𝑢2)     𝑢1 = ceil(𝑢2) 
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a. (𝑥, 𝑦) interpolation b. (𝑢, 𝑣) interpolation 

Figure 13: Determination of the weighting function coefficients via linear interpolation. 
 

 

Once the sixteen locations for which we need to calculate a coefficient have been found, the 
value of the coefficient must be determined. To do this we employ a simple linear interpolation 
scheme in which the coefficient is a combined value of the (𝑥, 𝑦) and (𝑢, 𝑣) interpolation steps. 
The distance from the (0,0) point in both interpolation schemes is all that is needed to 
calculate the coefficient. The relative distances, 𝑡, are given by  

𝑡𝑥 = 𝑥2 − 𝑥0  𝑡𝑦 = 𝑦2 − 𝑦0  𝑡𝑢 = 𝑢2 − 𝑢0  𝑡𝑣 = 𝑣2 − 𝑣0       (18) 

Using these and simple geometry the sixteen coefficients can be calculated. The interpolation 
coefficients, 𝑁𝑥𝑦𝑢𝑣, have subscripts that represent their location relative to the voxel to be 
interpolated. For example 𝑁0000, is the coefficient for point (𝑥0, 𝑦0, 𝑢0, 𝑣0). The coefficients are 
calculated by using the normalized distances and are shown to be 

𝑁0000  = (1 − 𝑡𝑥)�1 − 𝑡𝑦�(1 − 𝑡𝑢)(1 − 𝑡𝑣)  

 𝑁0001 = (1 − 𝑡𝑥)(1 − 𝑡𝑦)(1 − 𝑡𝑢)(𝑡𝑣)        
 (19) 

⋮ 

𝑁1111 = (𝑡𝑥)(𝑡𝑦)(𝑡𝑢)(𝑡𝑣) 
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The result of this procedure can be seen in Figure 14, where the red boarder represents the 
four microlenses shown in Figure 13 with the (𝑢, 𝑣) distribution behind it. The sixteen 
interpolation coefficients are shown as the shaded squares with intensity depending on their 
weight (white =0, black = 1). 

 
Figure 13: Illustration of the sixteen interpolation coefficients found using the weighting 
function. The red lines represent the edges of microlenses with the blue dots representing 
microlens centers. 
In the formulation of the weighting function no consideration was made for the aperture edges 
that are contained in the overall microlens image. Since the edge of the aperture image will fall 
partially on a pixel, its weight toward the reconstruction is diminished. To account for this a 
sequence of images are taken of a white background with the aperture open such that the 
intensity should be constant for all pixels under a microlens. These images are averaged 
together and normalized such that if the pixel falls completely inside the microlens image it 
yields a one, thus not affecting the weight, to zero if the pixel falls completely outside the 
microlens image. This is shown schematically in Figure 15, where the green “x” represents the 
center of the microlens, and the green circle is the outer edge of the microlens image. Once the 
corrective image has been normalized it is multiplied by the weights to correct for the 
boundaries.  
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Figure 15: Schematic of white image weighting correction. 

 

The final step necessary for the calculation of the weighting function is to normalize the weights 
for each voxel by the sum of the weights for that voxel. This is done so that so that the intensity 
contained in a voxel is conserved. In equation form the normalization process is given by 

 𝑤�𝑖,𝑗 = 𝑤𝑖,𝑗

∑ 𝑤𝑖,𝑗𝑖
             (20) 

This forces the condition ∑ 𝑤�𝑖,𝑗 = 1𝑖 , such that all the light emanating from the voxel 𝑗 must 
strike the image sensor.  

To validate the weighting function, a comparison is drawn from that of a particle simulation. 
The particle simulator, which treats a particle as a point source of rays, simulated 400 particles 
distributed uniformly within the boundaries of a single voxel. This was determined to be the 
best comparison since the weighting coefficient should be representative of the entire voxel 
not just the center. The simulation of 400 particles within a voxel does produce an accurate 
weighting function, however it has considerable computational costs that prevent it from being 
used for computation of the entire weighting matrix. As an illustration, consider that each voxel 
is simulated in this way, using 10,000 rays for each particle such that the distribution at the 
image sensor is accurate and continuous. In contrast, the interpolation process uses 244 u and v 
values to represent the same data. Figure 16 shows both the weighting coefficients of the 
affected pixels as well as the particle simulation described previously. It can be seen that the 
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weights are in fact representative of the particle simulation and are taken to be accurate, with 
the exception of some minor discrepancies near the boundaries.  

  
a) Weighting matrix b) Particle Simulation 

Figure 16: Weighting function comparison to particle simulation. 
 

C. Implementation & Computational Considerations 
The implementation of the aforementioned MART algorithm was not as simple as the single 
equation seems. First, the weighting matrix is calculated on a per voxel basis, which is reversed 
from conventional tomography. This necessitates a pre-calculation of the summation term in 
the denominator of the MART equation, essentially adding an additional iteration of 
computational time. In conventional tomography the weighting matrix is stored on a per pixel 
basis making a summation over all voxels affected by a pixel straightforward. Compounding 
this, is the size of the weighting matrix. For a weighing matrix of size 300 x 200 x 200 voxels and 
using a f/2 aperture (a larger aperture increases the u,v sampling) the weighting matrix is 350 
GB, storing only non-zero values. This makes storing the weighting matrix in memory 
impractical, therefore the data is stored on a hard disc in slices (1 slice per z location), in this 
case 200 slices, allowing for smaller chunks to be read into memory. The algorithm was 
implemented in C++, and uses binary files for faster processing. Using a 12 core workstation 
(algorithm is multi-threaded), with a RAID 0 array with 3 128 GB SSDs, the weighting matrix 
takes 4 hours to complete and the MART algorithm takes 4 hours for the first image and 1 hour 
per additional image.  
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D. Sample Reconstruction Results 
As an illustration of the capability of the reconstruction algorithm to reconstruct particles, a 
small group of particles were simulated using the aforementioned plenoptic simulator. For this 
exercise a smaller version of the prototype camera was used to cut down on computational 
time. Specifically, the synthetic camera has an image sensor of 850 x 850 pixels behind a 50 x 50 
microlens array and all other parameters, were kept constant. Twenty particles were randomly 
generated inside a 5 x 5 x 5 mm volume. The raw image is shown in Figure 16.        

 
Figure 17: Synthetic raw image 

 

As a means of comparison a volume using the actual particle positions was generated using a 3 
x 3 x 3 voxel Gaussian blob fit to the particles position. The final reconstruction of the particles 
is shown in Figure 18 and the true particle positions are shown in Figure 19. Figure 18b shows a 
front view of the reconstructed volume. When compared to the actual particle positions (Fig 
19b) the reconstructed particles are shown to match the actual particles in both size and 
location. Alternatively, when the reconstructed particles are compared to the actual particles in 
depth (Figs 18c & 19c) they are shown to match locations, but the reconstructed particles are 
elongated in depth. This can be attributed to the limited range of angles collected by the 
plenoptic camera. Fortunately, the intensity in depth is not  constant.  Figure 20 shows a single 
reconstructed particle iso-surface as well as a slice through the center of the particle on the YZ 
plane. The particle has a “hot” center with decreasing intensity at the front and back as shown 
in Figure 20b. This allows for resolution of the location of the center of the particle in depth, 
where a constant intensity would create a large ambiguity. The lateral spatial resolution of this 
particles reconstruction is limited to a single voxel. For other particles this may be four voxels or 
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larger depending on their location spatially as well as in depth. In particular, the reconstruction 
of a particle far away from the focal plane is more elongated in depth and blurred laterally. 

   
a) Isometric view b) Front c) Top 

Figure 18:Tomographic reconstruction of a synthetic particle field 
 

   
a) Isometric view b) Front c) Top 

Figure 19: Actual particle positions 
 

  
a) 3D Isometric view of a single particle b) Slice through center of particle 

Figure 20: View of single particle reconstruction 
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VI. Experiments with Synthetic Images 
In order to test the accuracy of the algorithm detailed above, we consider several cases starting 
with the best case scenario: a single particle. This test provides a nominal measure of accuracy, 
as well as defines the accuracy as a function of depth. An extension to this test is the multiple 
particle test where 500 particles are simulated inside a volume. Using the same metric as the 
single particle tests, the accuracy is determined in a non-ideal scenario (a random distribution 
in the presence of other particles). The final group of tests are full simulations where the 
accuracy measured is in terms of the velocity, not particle position. These tests include a 
uniform flow field as well as an Oseen vortex.  

A. Single Particle Reconstructions 
Using the synthetic image generation technique mentioned previously 40 particles are 
simulated (generating 40 different images) 1 mm (8 voxels) apart from each other in depth 
along the optical axis of the camera. The volume for each reconstruction was kept constant, 
such that the weighting matrix was the same for each reconstruction. The volume of size 6.125 
x 6.125 x 50.125 mm was discretized into a grid of 50 x 50 x 402 voxels, creating cubic voxel 
elements with sides of length 0.125 mm. For the reconstruction, a relaxation parameter of 0.5 
was used and the MART algorithm was run for 5 iterations. Since the particle locations are 
known, the error in the reconstructed particles can be calculated. To precisely determine the 
particle location with sub-voxel accuracy, a 3D Gaussian function was fit to the reconstructed 
intensity data and the peak location was taken to be the location of the reconstructed particle. 
The results are shown in Figure 21 with the absolute error (in voxels) on the y-axis and the 
relative position of the particle to the focal plane of the camera (100 mm away from the lens 
plane) on the x-axis. The results shown use a nominal magnification of -1, it is noted that the 
results will vary for other magnifications, however those are not considered in this work. 

  
a) X and Y (Lateral) b) Z (depth) 

Figure 21: Error in reconstruction accuracy via Gaussian fit of 40 particles spaced 1 mm apart 
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along optical axis 
 

Figure 21a reveals the lateral accuracy of the algorithm as a function of depth for this optical 
configuration. In this case the particle position was perfectly aligned with a voxel, representing 
the best case scenario. For the region near the focal plane [-10 10], the accuracy is minimal and 
nearly zero, with a notable exception being at the focal plane. This is due to ambiguity in a 1 
mm region around the focal plane caused by the nominal depth of field of our camera. More 
specifically, in this region light emanating from a particle strikes a single microlens whereas in 
other locations, the light is spread across multiple microlenses. Thus the algorithm does not 
have the information to “interpolate” between microlenses.  The MART algorithm spreads the 
intensity throughout this region often leaving two peaks: one before and one after the focal 
plane. This results in the 1 voxel error shown. Further away from the focal plane the algorithm 
is shown to be less accurate, however the absolute error is only 1 voxel. There is some 
noticeable peak locking occurring causing the solution to be forced into a single voxel.  The 
depth accuracy is shown in Figure 21b as a function of depth. In the region near the focal plane 
[-10 10] the error in depth was shown on average to be 1 voxel, with a standard deviation of 1.5 
voxels. Outside of this region the average error is five voxels. It is noted that the depth accuracy 
is worse than the spatial accuracy as is to be expected.  

An extension to the single particle test is to calculate the reconstruction error in multiple 
particles simultaneously. For this test a volume of size 30 x 20 x 20 mm discretized into 300 x 
200 x 200 voxels was used. Inside the volume 500 particles were randomly positioned and an 
image was generated. This is still a relatively small particle density, however the purpose of this 
test is to obtain the accuracy of individual particles in the presence of additional particles. To 
determine the error in the reconstruction a sub-volume around the area of a known particle 
location was extracted (sub-volume was of size 6 x 6 x 30 voxels), and fit with a Gaussian blob 
yielding the peak location, resulting in the absolute reconstruction error of the particles. A plot 
of the absolute X error v. absolute Z error is shown in Figure 22. The absolute error in X has a 
mean of 0.0658 voxels and a standard deviation of 0.7990 voxels. The absolute error in Z has a 
mean of 1.0392 voxels and a standard deviation of 2.9782 voxels. This is consistent with the 
single particle data in the range of depths used. 
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Figure 22: Scatter plot of X and Z absolute error in reconstruction of 500 simulated particles 

 

B. Cross-correlation Algorithm 
This paper has, until this point, discussed a method for obtaining particle fields from an image, 
however the ultimate purpose of this technique is to obtain the velocity of the fluid being 
measured. To do this a method to extract the displacement, and therefore velocity, from a pair 
of reconstructed particle fields is needed. The method employed here was developed in house 
and is a cross-correlation based technique, whose implementation is based on Adrian and 
Westerweel [33] and Scarano and Riethmuller [34]. Briefly, each reconstructed volume pair is 
divided into several interrogation volumes defined by a size in number of voxels and a percent 
overlap. For each interrogation volume pair, a fast Fourier transform (FFT) based cross-
correlation is computed and the location of the maximum correlation peak is estimated by a 
Gaussian peak fit to sub pixel accuracy. From this location as well as the time between 
exposures the velocity can be calculated.  

A more advanced version of this basic concept uses a multi-pass, multi-grid, window 
deformation technique known as VOLDIM [15]. Each iteration begins by defining the 
interrogation volumes for cross-correlation, based on the sizes and overlap for that iteration. 
This allows for grid refinement in the later iterations. Next, the FFT-based cross-correlation is 
performed and the displacement for each interrogation volume is calculated. The 
displacements are then validated using a median test with the displacement data in a 5 x 5 x 5 
neighborhood. If the displacement exceeds a pre-determined threshold (usually 2 [33]), the 
displacement is replaced by either a secondary peak or an interpolated value of the valid 
neighboring displacements. For subsequent iterations, the new interrogation volumes are 
displaced/deformed based on the displacements in the previous iteration. The deformation is 
calculated using a cardinal function interpolation function on a 7 x 7 x 7 stencil. The final 
velocity is calculated as the location of the correlation peak plus the predicted displacement 
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divided by the time between exposures.  In this work four passes are used starting with a 
window size of 32 x 32 x 32 and ending with a 16 x 16 x 16 window. All passes use a 50% 
overlap as well as a 2 pass median test validation.  

C. Uniform Flow Field 
This test involves randomly generating 10 velocity fields with a uniform displacement. The 
purpose of such a test, is to determine if there is any systematic error in the measurement 
associated with position. Five of the fields were displaced in the x-direction, and 5 in the z-
direction. For each case, the volume contained 25,000 randomly positioned particles 
corresponding to 0.0023 particles per pixel (according to the definition provided earlier). The 
number of particles was chosen to correspond to ∼10 particles per interrogation volume for a 
volume divided into 16 x 16 x 16 voxel windows. The particles were displaced 1.1682 mm or 
11.682 voxels in the x and z directions respectively.   

The results of the test cases are presented in Figures 23-26. The data is presented by averaging 
all 10 test cases into a single result. Furthermore, the results are presented as 2D images where 
the third dimension is averaged into the result. The first series of plots (Fig 23) display the mean 
of the absolute error in displacement as a function of lateral spatial location (the XY plane). In 
this case, the slices of the data along the z-dimension were averaged into the result. The mean 
of the absolute error shows the systematic error present in the system, and is plotted for each 
component of velocity in Figure 23. In Figure 23a, the average error in the calculated 
displacement in the direction of motion (for five cases) is generally less than 0.1 voxels 
indicating that the systematic error is quite small.  The results are even better in the y-direction 
(Fig 23b, perpendicular to the direction of motion). Figure 23c shows the error in the z-
component to be at most 1 voxel, which is similar to the single particle results. The standard 
deviation, or uncertainty, of the measurement is shown in Figure 24 using the same XY 
representation. In the lateral directions the uncertainty is generally less than 0.2 voxels 
indicating a small uncertainty. The z-component shows an uncertainty of approximately 0.8 
voxels. Generally speaking the uncertainty should decrease from the single particle case in 
proportion to 1/sqrt(N), where N is the number of particles averaged. Since each interrogation 
region consists of roughly 10 particles the uncertainty should decrease from 3 voxels (single 
particle) to 0.9 voxels. Figures 25 and 26 show the mean and standard deviation as a function of 
depth and are presented in the YZ plane. The results for the lateral displacements remain 
unchanged however; the results for the z-component (Figs 25c & 26c) indicate that most of the 
error occurs in the extremes of the volume in depth. Most of the inner regions of the volume 
have less than 0.5 voxels mean error and a standard deviation of 0.6 or less. This was to be 
expected since the reconstruction error increases more dramatically at these outside positions. 
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a) X-displacement b) Y-displacement c) Z-displacement 

Figure 23: Mean of 10 velocity fields shown as a function of lateral spatial location. The three 
plots shown are for the three components of velocity.  
 

   
a) X-displacement b) Y-displacement c) Z-displacement 

Figure 24: Standard deviation of 10 velocity fields shown as a function of lateral spatial location. 
The three plots shown are for the three components of velocity. 
 

   
a) X-displacement b) Y-displacement c) Z-displacement 

Figure 25: Mean of 10 velocity fields shown as a function of depth. The three plots shown are 
for the three components of velocity. 
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a) X-displacement b) Y-displacement c) Z-displacement 
Figure 26: Standard deviation of 10 velocity fields shown as a function of depth. The three plots 
shown are for the three components of velocity. 
 

D. Oseen Vortex 
The final synthetic test is of a more complicated flow field: an Oseen vortex. An Oseen vortex 
was chosen because of its 2D nature, therefore allowing for isolation of one of the components 
of velocity. The Oseen vortex is described by a maximum tangential velocity, 𝑉𝜃,𝑚𝑎𝑥 and a core 
radius, 𝑟𝑐. The following equation defines the Oseen vortex in cylindrical coordinates 

𝑉𝜃(𝑟) = 𝑉𝜃,max  �1 + 0.5
𝛼
� 𝑟𝑐
𝑟
�1 − exp �−𝛼 𝑟2

𝑟𝑐2
��           (21) 

where r is the radius to the current location, and a scale factor alpha = 1.25643. For this test a 
maximum tangential velocity of 1 mm/s or a ∼10 voxel displacement was used with a core 
radius of 10 mm.  Two flow fields were simulated, one with the vortex rotating about the z-axis 
(optical axis) highlighting the lateral spatial accuracy of the camera as well as rotating about the 
x-axis such that the vortex is rotating in depth. For these tests, only one velocity field was 
obtained for each case and the number of particles and other parameters remain unchanged 
from the uniform displacement tests. The results are presented in a similar fashion to the 
uniform displacement case, where the mean of the velocity component is presented. In this 
case, the mean is taken from a single velocity field, and averaged in the axial direction of the 
Oseen vortex. In order to test the results an ideal case was generated by creating two volumes 
from the exact particle solutions, assuming a Gaussian shape for the particles, and running the 
volumes through the cross-correlation algorithm. This provides a benchmark of the highest 
possible accuracy for the reconstruction. The results of the z-axis rotation case are shown in 
Figures 27 & 28 and the results of the x-axis rotation are shown in Figures 29 & 30. The first 
figure (a) is the reconstructed velocity field, (b) is the ideal simulation, and (c) is the absolute 
error between the two. Since in an Oseen vortex only two of the components are displaced 
(axial velocity is zero) only two are shown. It is shown that the velocity field derived from the 
reconstructions is a very good match for the vortex rotated around the z-axis. The absolute 
error in both the x and y displacement is shown to be about 1 voxel or less.  The w-component 
is captured; however it is less representative of the true flow-field. This stems from the greater 
inaccuracy in depth, as detailed previously.  
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a) Reconstructed b) Actual c) Absolute error 
Figure 27: Oseen vortex 𝑢� velocity contours rotating about z-axis 
 

   
a) Reconstructed b) Actual c) Absolute error 
Figure 28: Oseen vortex 𝑣̅ velocity contours rotating about z-axis 
 

   
a) Reconstructed b) Actual c) Absolute error 
Figure 29: Oseen vortex 𝑣̅ velocity contours rotating about x-axis 
 

   
a) Reconstructed b) Actual c) Absolute error 
Figure 30: Oseen vortex 𝑤� velocity contours rotating about x-axis 
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VII. Experimental Assessment  
To complement the synthetic image results, physical experiments were conducted with the 
plenoptic camera in two different facilities.  These experiments consisted of 1) wall bounded 
flow of a turbulent boundary layer and 2) jet flow from a heated, supersonic axisymmetric 
nozzle.  These experiments are simple proof-of-concept demonstrations of plenoptic PIV in 
different settings.   

In addition, experiments were also conducted in a water tunnel along with traditional PIV for 
the purposes of validation.  At the time of this report, the data was still being analyzed and not 
available. 

A. Turbulent Boundary Layer on a Wind Tunnel Wall 
The first example is 3D measurement of an incompressible boundary layer with adverse 
pressure gradient.  The boundary layer was formed on the test section wall of an open loop 
wind tunnel with free stream velocity of ~15 m/s.   The plenoptic camera was positioned to 
image the boundary layer through a window looking up in the direction of shear (depth 
direction of the camera).  The flow was seeded through an upstream slit with alumina particles 
and illuminated with a dual pulse laser outputting 50 mJ/pulse and formed into a 50 mm thick 
sheet. The Reynolds number based on momentum thickness, Reθ, was 7,239 and the adverse 
pressure gradient  (β=10.1) was imposed using a Stratford Ramp mounted on the opposite wall.  
Figure 31 shows the 3D velocity field determined using the plenoptic camera with dimensions 
highlighted in the figure.  The streamwise velocity is indicated by the color of the vector; the 
shear of the boudnary layer is quite clear and the observed boundary layer thickness 
qualitatively agrees with that measured using traditional 2D PIV.   

Additional details and examples of 3D velocity fields obtained in this flow can be found in 
Melnick et al. [35] 
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Figure 31:  Preliminary experimental data showing 3D velocity field of a turbulent boundary 
measured using prototype plenoptic camera.  Camera was oriented to look vertically up 
through the boundary layer illustrating ability to resolve shear along the optical axis. 

B. Heated, Supersonic Jet 
The second example is taken from experiments recently conducted at the National Center for 
Physical Acoustics (NCPA) located at the University of Mississippi.  These experiments were 
conducted as a proof-of-concept of the technique’s viability for performing 3D velocity 
measurements in high Reynolds number, supersonic jet.   The facility consists of a heated (T = 
1005 K), 50.8 mm diameter, Mach 1.74 supersonic jet exhausting into an anechoic chamber.  
The jet nozzle is constructed from conic shaped converging and diverging sections that result in 
the production of shock-expansion cells even when the jet is operated at nominally ideally 
expanded conditions.  The jet was seeded with submicron alumina particles injected through 
ports contained in the stagnation chamber.  A volume of approximately 61 mm (streamwise) x 
91 mm x 100 mm was illuminated using a pulsed Nd:YAG laser with pulse energy of 
approximately 200 mJ/pulse.    Figure 32 shows a preliminary result obtained from a single day 
of experiments.  The color indicates the streamwise component of velocity with the y-axis 
(streamwise direction) stretched to show cross-sections of the jet at different downstream 
locations.  The cross-sections spans approximately from x/D = 1.5 to 2.5.  The ability of the 
camera to resolve the rough circular shape of the jet and the relatively thin shear layer is 
apparent although further work is needed to validate the small scale features observed around 
the jet periphery.  LES performed in the same flow also indicates that variations in streamwise 
velocity within the jet core are to be expected in this flow. 

67 mm 39 mm 

45 mm 

15 m/s 
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Figure 32 Sample 3D velocity field obtained in a 2” diameter supersonic jet seeded with alumina 
particles.  Y-axis is stretch by factor of 5 to illustrate different cross-sections of jet flow.  Color 
corresponds to streamwise (y) component of velocity. 
 

To further verify the feasibility of this approach for this flow field, 24 image pairs were 
processed and used to determine mean and rms quantities.  Figure 33 shows the average 
velocity field calculated from this limited set of data.  A key feature of the average velocity field 
is the presence of a low velocity region in the center of the jet, a feature which is expected to 
occur in conic, supersonic nozzles such as the one used in this study.  The general shape and 
magnitude of the velocity is also consistent with expectations.  Figure 34 shows the RMS 
fluctuations of the velocity field.  The jet core and ambient both show low levels of fluctuations 
whereas the shear layer shows the highest levels of fluctuations.     

 

Flow direction (y-axis) 

Camera looking up (z-axis) 

61 mm 

91 mm 

100 mm 
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Figure 33 – Average velocity field calculated using 24 image pairs.  5 cross-sections are shown 
with the lower velocity jet core apparent near the center of the jet.  Velocity scale ranges from 
200 (blue) to 800 (red) m/s. 
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Figure 34 – RMS velocity field calculated from 24 image pairs.  5 cross-sections are shown with 
the fluctuations in the shear layer being apparent. 
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VIII. Frequency-Domain Deconvolution-Based Volume 
Reconstruction 
While the implementation of the MART algorithm discussed previously is quite promising, its 
main disadvantage is that it is computationally expensive.  As such, a parallel line of work was 
initiated to develop computationally more efficient reconstruction algorithms.  As will be 
discussed, our approach is centered on the development of FFT based deconvolution 
algorithms, which are known to be significantly more computationally efficient for problems in 
similar fields, such as deconvolution microscopy.  This work is currently being pursued through 
a collaboration with Dr. Stan Reeves, a faculty member in the Department of Electrical 
Engineering at Auburn University.  A Ph.D. student, Paul Anglin, is expected to defend his 
dissertation in early 2014 based on the work initiated as part of this grant.  The purpose of this 
chapter is to summarize the approach adopted, to identify some of the anticipated challenges 
and to report on the progress made to date. 

A. Overview 
Deconvolution is a frequency-domain inversion technique based on the Fourier transform 
property relating convolution to point-by-point multiplication in the frequency domain. The 
focal stack generated by digitally refocusing the acquired data can be modeled as a linear 
process whereby the system point spread function (PSF) is convolved with the imaged volume. 
It follows that the imaged volume can then be estimated by point-by-point division of its 
spectrum by the spectrum of the PSF. This is beneficial as calculation of the frequency spectrum 
of a signal can be done efficiently via the FFT. Where volume reconstruction may have taken 
hours using tomographic methods, solutions utilizing deconvolution can be obtained in minutes 
or even seconds. To truly understand the impact that such a drastic reduction in processing 
time can have, one must consider that PIV relies on not just a single reconstructed volume. To 
fully describe the flow field, the volume must be imaged and subsequently reconstructed 
multiple times to allow particles to be tracked as they move through the medium. Reducing the 
time to perform a single reconstruction to minutes significantly decreases the time required to 
produce usable results and image the flow field using PIV. 

B. Imaging Model 
In order to apply deconvolution to light-field imaging and PIV, a generalized model for the 
imaging volume must be established. The imaging operation can be modeled as the convolution 
of the object with an appropriate point spread function (PSF) that describes the blur as the 
focal plane moves away from the object and any blur due to optical aberrations. Defining the 
object in 3-space as f(x, y, z), the PSF as h(x, y, z), and additive noise as η(x, y, z), the acquired 
image g(x, y, z) is given by, 
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     (22) 

where the second step is achieved by denoting the convolution operator as ∗. 

The PSF is simply the system impulse response. The PSF that describes the typical imaging 
system will resemble a double cone where the apex of each describes the point where the 
system is optimally focused. An example PSF is given in Figure 35, which shows a particle in 
object space (left figure) and two orthogonal slices of the PSF (center and right figures). From 
Figure 35, it can be seen that as the system is focused in front of or beyond a point, the 
resulting image will become increasingly blurred. Further, when multiple points are present in 
the imaged volume the blur resulting from out-of-plane points will contribute to the in-plane 
energy as well. This can reduce the resolution of the system, and in extreme cases, completely 
obscure points. 

 

Figure 35: Impulse (left) followed by orthogonal cross sections in the (x, y) plane (center) and 
the (y, z) plane (right) of an example 3-D impulse response. 

 The 3-D PSF completely characterizes the system [36], and knowledge of the PSF hints at 
the ability to deblur the image with proper processing. In general, the PSF can be estimated 
analytically, observed experimentally, or created from some combination of the two. However, 
processing techniques that rely on the PSF are typically sensitive to errors in the PSF, or 
mismatch between the estimated PSF and the actual PSF. This mismatch can occur for several 
reasons such as noise and/or imaging artifacts due to optical aberrations, but a significant 
source of PSF mismatch is the result of the system not being shift invariant as is the case with 
plenoptic imaging. 

C. Frequency-Domain Deconvolution 
The deconvolution algorithm presented here is a frequency-domain processing technique that 
relies on the well-known convolution theorem of the Fourier transform. This states that 
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convolution in the spatial domain is equivalent to point-by-point multiplication in the frequency 
domain, or 

      (23) 

Applying this to the previous result gives 

    (24) 

In the absence of noise, the imaged space can be estimated as 

           (25) 

Unfortunately, the system is rarely, if ever, noise free. The general case is then, 

       (26) 

This relationship offers some insight into both the advantages and disadvantages of inverse 
filtering. The primary advantage is speed of computation. Direct convolution for an N-length 
signal requires N2 operations while convolution via FFT requires O(N log N ). However, perfect 
knowledge of the transfer function no longer guarantees a perfect reconstruction of the 
original volume once noise is introduced. Furthermore, a transfer function containing small 
values will result in an amplification of the noise term in the estimate of the imaged volume. As 
these values approach zero, the noise term will dominate the response. This case is common 
because the system typically represents an infinite bandwidth scene with band-limited data. 
The consequence is a transfer function with zero crossings. 

 The impacts of this noise amplification and PSF mismatch can be mitigated to some 
degree with proper filtering. One approach is to minimize the expected value (E) of the squared 
error 

           (27) 

The well-known result of this minimization is the Wiener filter given by 
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     (28) 

where Sη and Sf are the power spectrum of the noise and the original image volume 
respectively. When the power spectra are not known, which is often the case, the ratio of the 
power spectra are replaced by a regularization parameter K. Substituting this into the above 
equation gives 

      (29) 

 For the noise free case with perfect PSF agreement, the regularization factor K can be 
set to zero, which reduces Equation 29 back to Equation 25. These relationships can be applied 
directly to plenoptic data. 

D. Deconvolution Applied to Simulated Plenoptic Data 
In order to determine the efficacy of deconvolution applied to plenoptic data, simulations begin 
with 2-D cases. This simplification is only necessary to simplify visualization of the results, and 
the results are directly applicable to the 3-D case. The system was simulated for a plenoptic 
camera with the following parameters: 

 

Table 3: 2-D Simulation Parameters 

Selection of a PSF is critical to the performance of deconvolution algorithms. There are many 
parameters that can affect the impulse response of an optical system such as optical 
aberrations. Furthermore, a plenoptic camera has unique characteristics that result in a system 
that is spatially variant. Characteristics such as microlens to sensor misalignment and 
quantization errors resulting from particles overlapping multiple microlenses cause the impulse 
response to differ throughout the imaging volume. With this in mind, the PSF chosen for these 
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simulations is generated by placing a point on the optical focal plane along the optical axis. The 
point is an ideal impulse in that all the simulated rays originate from an infinitesimally small 
point. This ensures that the point does not overlap multiple lenslets. Furthermore, simulations 
are performed with the microlens and sensor perfectly aligned. 

 

Figure 36: Simulated 2-D PSF 

 The focal stack for the test PSF is shown in Figure 36 and demonstrates an important 
aspect of plenoptic imaging. The PSF appears more pixelated than one might expect. This is not 
a simulation artifact but is the result of the reduced resolution inherent in the system. Again, 
the spatial resolution of the image is set by the size of each microlens and each ‘virtual’ pixel is 
one lenslet pitch, pl, in width. 

 With a PSF chosen, the simulation proceeds with a test case where three points are 
placed within the simulated imaging volume at (3mm, 103mm), (0mm, 100mm), and (−3mm, 
88mm), where the second point is again located on the optical focal plane along the optical 
axis. The second point is included in order to provide a reference, as it should perfectly match 
the test PSF. As with the PSF, each point is simulated using 5000 rays originating from an 
infinitesimally small point. Figure 37 shows the resulting focal stack for this case where the 
figures are normalized to the peak value to aid in clarity. 
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Figure 37: Focal stack for three simulated points 

 There are two aspects of Figure 1.3 that are immediately apparent and ultimately 
related. Specifically, the three points have significantly different intensities and varying sizes. 
This is noteworthy as each point is simulated using the same number of rays, and therefore has 
the same energy, as well as being simulated as an infinitely small point. Ideally, each point 
would have the same or similar intensity and size at its optimal focal plane. However, the 
plenoptic camera is not able to focus equally well at all possible focal planes as the resolution at 
synthesized focal planes is limited by the bandwidth of the camera. For the purposes of this 
research, this is a contributor to the spatially variant nature of the PSF. The result is a variation 
in the PSF throughout the imaging volume. 

 Applying deconvolution per Equation 29 with no regularization (K = 0) gives the results 
shown in Figure 38. This appears to have little in common with the original image shown in 
Figure 37, but these results are to be expected. Closer inspection shows that the point at the 
origin is present in the deconvolved image. Again, the central point was chosen as it perfectly 
matches the test PSF. 
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Figure 38: Deconvolved image with K=0 

Applying regularization to the deconvolution algorithm produces more desirable results. Figure 
39 shows the results when a K = 0.00015 regularization is applied. This is a small amount of 
regularization, but the impact is significant. The three points are clearly present in the 
reconstruction. However, the central point dominates the response, and the two other points 
appear to have a much lower intensity. Further increasing the regularization to K = 0.01 yields 
the response shown in Figure 40. This is an increase of two orders of magnitude in the 
regularization, and again the impact is significant. While each of the points becomes more 
clearly identifiable, the deconvolution has become less effective at reducing the blur. 
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Figure 39: Deconvolved image with K=0.00015 

 

Figure 40: Deconvolved image with K=0.01 

Noting that the response in the deconvolved image is dominated by the central point, an 
additional case is created in order to provide more insight into the results. For this case, three 
points are again simulated, but the central point is now moved to (2.6mm,106mm). The 
resulting focal stack is shown in Figure 41. Initially, this focal stack appears quite similar to that 
in Figure 37 above. However, upon closer inspection, two important characteristics of the 
system can be observed. 
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Figure 41: Case 2 focal stack for three simulated points. 

 First, it is clear that the plenoptic camera loses resolution as the points move away from 
the optical focal plane. Again, this is seen as a loss in peak intensity and a blurring of the point, 
and is due to the limited angular resolution of the imaging system. Some loss in resolution will 
occur as points move away from the optical axis, but this is a result of points being imaged by 
multiple micro lenses, and is much less significant when compared to displacements away from 
the focal plane. Next, a “banding” phenomena is clearly present for each point. This artifact 
resulting from computational refocusing has not been addressed in the current literature and 
will be investigated further in subsequent research. 

 Deconvolving the image using the test PSF described above with a regularization 
parameter K = 0.00015 yields the image shown in Figure 42. The resulting image is a significant 
improvement over the blurred focal stack shown in Figure 41, but artifacts do remain. These 
artifacts are primarily the result of mismatch between the PSF and the simulated response of 
each object. However, one artifact of note is the vertical line near the middle of the 
deconvolved image. This is also an issue of PSF mismatch, but this can be mitigated to some 
extent with proper signal processing. 
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Figure 42: Deconvolved image with K=0.00015 

E. Artifacts and Improvements 
Significant artifacts remain in the volume reconstruction, and an efficient method of reducing 
these is desirable. Two significant artifacts have been identified that do not appear to have 
been previously published. These are banding in the object response and a vertical line at the 
origin of the deconvolved image, both of which degrades the reconstruction. 

Furthermore, while deconvolution significantly reduces the computational burden when 
reconstructing a volume from plenoptic data compared to tomographic methods, a significant 
bottleneck remains in generating the object focal stack and the PSF and the efficiency of the 
algorithm can be improved by reducing these operations as well. Once again, Fourier 
processing, and specifically Fourier-based refocusing, offers a means of further reducing the 
computational requirements. For the purposes of this work, this approach can be leveraged 
into a frequency-domain iterative algorithm intended to further reduce remaining artifacts. 

1. Banding in the object image response 
Figure 41 shows the focal stack for three ideal points spread throughout the imaged volume. 
This image shows an artifact inherent to the imaging system that has not been previously 
identified. That is, each object exhibits banding in its response. To more clearly illustrate the 
artifact, an additional case is shown in Figure 42 where a single point is located at (0mm, 
118mm). It should be noted that the banding is more prominent in Figure 42 only due to scaling 
of the image where, again, the peak intensity is normalized to 1. 
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Figure 43: Example focal stack illustrating banding in a refocused image 

The source of this artifact stems from the tradeoff inherent in plenoptic imaging. A plenoptic 
camera sacrifices spatial resolution in order to obtain angular information, and one 
consequence is that the system no longer records each ray location in space with infinite 
resolution. Its position must therefore be quantized to within one microlens. When an image is 
refocused, each ray collected by a microlens is assumed to originate from the center of the 
microlens. The result is a region where no data is present in the refocused plane. Similarly, a 
finite number of angular samples are collected, which is determined by the number of pixels 
underneath each lenslet. While each pixel captures a range of angles, the reconstruction 
assumes a discrete angular. Again, this discretization results in regions where no data is present 
in the refocused plane. 

Further complicating the issue is microlens/sensor misalignment and the case where the 
microlens and pixel pitch are not integer multiples of one another. This is shown graphically in 
Figure 43. To accommodate these conditions, pixels around the perimeter of each microlens 
are removed from the reconstruction in order to compensate for overlapping information from 
adjacent microlenses. This effectively removes u plane samples and results in larger regions 
with no data. 
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Figure 44: Simplified diagram showing pixels overlapping the boundary between two 
microlenses 

This artifact is significant due to its asymmetry and the fact that it appears in all points not 
falling on the optical focal plane and optical axis. This artifact alone confirms that the response 
is spatially variant, and multiple PSFs would be required to perfectly describe the system. 

2. PSF Asymmetry 
The mismatch between the selected PSF and an object focal stack leads to another interesting 
artifact. To demonstrate, the focal stack used to generate Figure 43 above is deconvolved using 
the same PSF shown earlier. The result is shown in Figure 45, and the artifact of interest is the 
vertical line at the origin. With the exception of a single point at the origin, this vertical line 
appears in all the reconstructions, regardless of the point distribution. The source of this 
artifact is the asymmetry of the object focal stack. Specifically, the test PSF is centered at, and 
symmetrical about, the origin. However, because the object is not centered in the focal stack, 
the response is asymmetric due to the presence of more focal planes on one side of the object 
compared to the other. Figure 46 shows a cross section of both the PSF and the object focal 
stack that clearly shows the mismatch in question. 
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Figure 45: Deconvolved image showing a single point offset from the origin 

 

Figure 46: Cross section of PSF and object focal stack 

The relationship between the object focal stack asymmetry and the vertical line is not 
immediately obvious. However, considering the process in the forward direction can be useful 
in clarifying the issue. The deconvolved image can be thought of as a series of impulses, where 
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convolution between the impulse and the PSF explains some portion of the object focal stack. 
The zero lag case, that is, the case where the PSF is centered over the object focal stack is the 
only case where every point in the PSF has a corresponding point in the object focal stack. A 
shift in any direction results in points in the PSF with no corresponding point in the object focal 
stack. The result is an impulse at the origin that attempts to explain the error resulting from the 
asymmetry of the object focal stack. 

A more precise explanation, although less intuitive, can be found through inspection of the 
spectral content of the component signals. Referring to Figure 47, an oscillation or ringing can 
be noted along the horizontal axis. This is the result of taking the Fourier transform of a 
spatially limited signal. Specifically, the PSF and object focal stack do not decay to identically 
zero values before reaching the edge of the focal stack. This discontinuity results in a sinc-like 
response in the frequency domain. However, because the PSF and the object focal stack are 
truncated differently, the resulting spectra differ. 

 

Figure 47: Fourier transform of PSF (left) and the object focal stack (right) 

Comparing the Fourier transform of the deconvolved image 𝐹�(𝑘𝑥, 𝑘𝑧) shown in Figure 48 
illustrates the differences between the spectra. Of note is the significant ringing along the 
horizontal axis. Because the PSF and the object focal stack do not perfectly match, the ringing is 
amplified in the result of the deconvolution. Recalling that the spectrum of a single point (or 
impulse) is unity, where the phase of the response determines the location of the points in 
space, it is clear that the resulting deconvolved spectrum will yield artifacts. 
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Figure 48: Fourier transform of deconvolved image with K=0.00015 

F. 3-D Fourier Slice Refocusing 
Fourier slice refocusing, as presented by Ng [37], provides a method of refocusing an image to a 
specified distance based on the Fourier slice theorem. The Fourier-slice theorem, or projection-
slice theorem, was first developed by Ron Bracewell [38] while studying radio astronomy but 
has been applied to many fields with medical imaging being a significant benefactor [39, 40]. 
The advantage of this approach over integral-based refocusing techniques is seen by comparing 
the number of operations required to generate a refocused image. Integral-based refocusing 
requires O(n4) operations for each focal plane, where n samples are assumed in each 
dimension. Compare this to Fourier-slice refocusing which, requires only O(n4 log n) for the 
initial 4-D FFT, O(n2) for the slicing operation, and O(n log n) for the inverse 2-D FFT. As the 
number of samples increases, this offers a significant computational savings. Furthermore, 
when cast in the context of deconvolution, multiple focal planes must be generated. These can 
each be calculated from the 4-D FFT of the plenoptic data, which further improves the 
efficiency. 

Existing derivations for Fourier slice refocusing are predicated on generating a single 2-D image. 
However, in the context of deconvolution, a complete 3-D focal stack is required; more 
specifically, the FFT of the 3-D focal stack is desired. Obtaining this without requiring an interim 
conversion to the spatial domain further improves the efficiency of this technique. To achieve 
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this, Fourier slice refocusing can be used to generate an array of 2-D FFTs corresponding to 
each focal plane in the final focal stack. A final 1-D FFT is performed across the third dimension 
of the array, which gives the 3-D FFT of the focal stack. 

Establishing the framework for Fourier slice refocusing begins with the light field at the lenslet 
plane given by L(x, y, u, v). For an arbitrary point in 3-space, the light field is given by 

        (30) 

Defining the shearing function as B, 

         (31) 

and arranging the coordinates (x’, y’, u, v) into the column vector a, the function can be 
rewritten as, 

            (32) 

The intensity at any given point on the 𝑧′ = 𝑧 ∝ plane is obtained by integrating the light-field 
with respect to u and v as 

       (33) 

A traditional 2D image is obtained by evaluating the integral for a fixed z’, and by extension, the 
volume is obtained by evaluating the integral at all points within the volume. This is a 
computationally intensive process. However, the projection-slice theorem offers a more 
efficient means of obtaining the 3D focal stack directly through Fourier processing. 

It can be shown that for an arbitrary N-D space and M-D projection (where M < N), the Fourier 
projection-slice theorem is 

           (34) 
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where FM represents the M-D Fourier transform, IMN  represents the projection from M to N, SMN  
represents the slicing operation whereby the last N-M dimensions of a function are set to 0, 
and B is the shearing operator. 

When generating a 2D image (M = 2) from 4D plenoptic data (N = 4), Equation 34 becomes 

         (35) 

Using the right-hand side of Equation 35, the 2D FFT corresponding to a particular focal plane 
can be selected from the 4D FFT of the plenoptic data. Each 2D FFT is then arranged into a 3D 
array, and a final 1D FFT along the third dimension of this dataset results in the 3D FFT of the 
corresponding focal stack. While taking the 3D IFFT of this data set would yield the focal stack, 
for the purposes of deconvolution, it is more desirable to operate entirely in the frequency 
domain. 

A test case is again simulated in order to compare integral-based refocusing and FFT-based 
refocusing. However, FFT-based refocusing has proven to be more sensitive to edge 
discontinuities as well as limited angular samples. To limit the impact of this, the simulated 
microlens array is increased to 150 microlenses, and subsequently, the number of sensor pixels 
increases as well. 

 

Table 4: 2-D Simulation Parameters 

A comparison of the focal stack resulting from integral-based refocusing and FFT-based 
refocusing is provided in Figure 49, where only the central 89 lenslet pixels in the vertical 
direction are considered for clarity. Clearly, FFT-based refocusing compares favorably and has 
the added advantage of a reduced computational burden. For the purposes of this work, an 
FFT-based solution also reduces the initial computational overhead associated with an FFT-
based iterative algorithm. Additionally, each focal stack exhibits a spatial distortion where the 
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PSFs appear to ‘lean.’ This is believed to be related to the geometric distortion that occurs 
when the imaged object space is compressed into the image space residing between the main 
lens and the lenslet array. 
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Figure 49: Comparison of integral-based and FFT-based refocusing 

G. 2.4 Iterative Algorithm 
Establishing a method of generating the spectral content of an object focal stack and system 
PSF directly leads to the development of an efficient FFT-based iterative algorithm. The 
algorithm proposed here is based on a gradient descent method, which attempts to minimize 
the squared error of the estimate at each iteration. To further utilize the research presented 
here, deconvolution can be used to rapidly generate the initial estimate in order to speed 
convergence. 

1. Iterative Gradient Descent Applied to Plenoptic Imaging 
The imaging process and subsequent refocusing can be described as a linear process. Let g be 
the plenoptic data acquired by the imaging system sensor, f be the 3D object, n be additive 
noise, and D be the matrix that describes the mapping from object space to the data. The 
system is then modeled as, 

              (36) 

The squared error is 

           (37) 

Taking the first derivative and setting to zero gives the desired result of minimizing the squared 
error. 

           (38) 

Equation 38 gives an estimate of the 3D space based on the plenoptic data acquired by the 
system. The gradient descent algorithm can then be established by moving in the opposite 
direction of the gradient of the error term and using this to update the previous estimate as 

           (39) 

Considering these relationships in more detail gives a more intuitive interpretation. The 𝐷𝑇𝑔 
term generates a focal stack from the plenoptic data, 𝐷𝑇𝐷 is a blurring operation which uses 
the system PSF to blur the current estimate of the object space, and 𝛽𝑘 is a scalar used to adjust 
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the step size at each iteration. By repeating this process, the algorithm can iteratively reduce 
the error between the focal stack and the object space estimate. Furthermore, this can be done 
efficiently because the entire operation can be carried out in the frequency domain using point-
by-point multiplications rather than convolutions necessary in the spatial domain. 
Unfortunately, limitations remain. 

First, the quality of the estimate is limited by the accuracy of the PSF. Because the PSF is used 
to blur each estimate in the error calculation, PSF mismatch will lead to errors in the estimate. 
Plenoptic imaging systems are spatially variant, and therefore a single PSF cannot completely 
characterize the system. This indicates that the use of a single PSF will result in some level of 
error that cannot be removed through application of the iterative algorithm, or multiple PSFs 
must be implemented in order to obtain a better estimate. 

Second, termination criteria must be established. The algorithm in Equation 39 has no inherent 
means of termination due to the significant number of unknowns. Termination can be initiated 
by several means including user intervention, limiting the number of iterations, establishing a 
threshold for the error criterion, etc. Further, due to PSF mismatch and potential edge artifacts, 
the algorithm can begin to amplify artifacts in the estimate if allowed to progress without 
termination criteria or without modifications to the algorithm. 

H. Fourier Projection-Slice Theorem 
The previous sections have proposed a method of reconstructing the imaged volume through 
the use of deconvolution. However, another frequency-domain reconstruction technique exists 
that may provide yet another efficient means of estimating the space. Plenoptic imaging can be 
thought of as taking 2-D projections from a 3-D object over a range of angles. This 
transformation is an extension of the 2-D Radon transform to 3-D space, i.e., the 3-D Radon 
transform. It is proposed that the 3-D Radon transform also has an inverse as does the 2-D 
transform through the use of the projection-slice theorem. 

While the projection-slice theorem has been extended to higher dimensions, plenoptic imaging 
poses a unique situation in that the imaging sensor is on a fixed plane, and only a limited 
number of angular samples can be collected. The typical geometry is one where the sensor is 
rotated around the object to be imaged, allowing each projection to be taken normal to the 
imaging surface over a full range of angles. 

1. 2-D/3-D of the Fourier Projection-Slice Theorem 
The projection-slice theorem is the basis for Fourier-based tomographic reconstruction. 
Traditionally, this is used to reconstruct a 2-D image f (x, y) from its 1-D projections 𝑔(𝑙, 𝜃) [41] 
and is formally given by: 
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           (40) 

This relationship states that the Fourier transform of the 1-D projection 𝑔(𝑙, 𝜃) is equivalent to 
a slice from the 2-D Fourier transform of the object f (x, y). The projection-slice theorem has 
been extended to higher dimensions [42-44], but typically the geometry is such that the line 
integrals necessary to calculate the projection are taken normal to the surface. However, the 
sensor in a plenoptic camera is fixed, and the image of the 3-D object is projected onto this 
sensor. That is, the line integrals used to calculate the projection would intersect the sensor 
plane at some arbitrary angles 𝜃 and 𝜙. The projection-slice theorem must be established for 
this new geometry. 

Defining an arbitrary object in a 3-dimensional space by f(x, y, z), the projection g(x’, y’, z’) 
resulting from rays parallel to 𝑣� onto a 2-dimensional plane at z = 0 is given by: 

       (41) 

Here, 𝑟̅ = 𝑟̅0 − 𝑡𝑣̅ is the equation of a vector in three-space as shown in Figure 50. The vector 𝑣̅ 
is a unit vector in the direction of 𝑎�, and it can be shown that a number t exists such that 
𝑡𝑣� = 𝑎�. 

 

Figure 50: Geometry for the equation of a line in three-space 

The unit vector 𝑣̅ can be written in polar coordinates as 
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            (42) 

and the equation of a line parallel to the unit vector in three-space is given by 

         (43) 

The geometry of the system is shown in Figure 51. 

 

Figure 51: Geometry of the projections through f(x,y,z) on to the sensor plane 

Taking the 2-D Fourier transform of 𝑔(𝑥′, 𝑦′, 𝑣̅). 
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  (44) 

where the last line follows from the sifting property of the Dirac delta function. Regrouping 
terms yields 

    (45) 

This is the Fourier projection-slice theorem relating the 2-D projections from an object to its 3-D 
Fourier transform for the geometry shown in Figure 51. This relationship allows the imaged 
volume to be reconstructed directly from the plenoptic data without the need for 
deconvolution. Furthermore, because this relationship is based on the frequency-domain 
representations of the signals, efficient FFT processing can be used.  

I. Future Work 
 

The preceding discussion of FFT based deconvolution algorithms sets the stage for continuing 
and promising work in the area of 3D image reconstruction with a plenoptic camera.  In the 
context of plenoptic PIV, these algorithms are expected to provide an order of magnitude 
improvement in computational efficiency.  It is clear, however, that significant work is still 
necessary to implement these algorithms in a practical and efficient manner.  The most notable 
challenges are related to the spatial invariance of the plenoptic camera’s PSF, which can cause 
reconstruction artifacts.  Solutions to these challenges have been proposed and work is 
currently ongoing. 
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IX. Conclusions & Future Work 
A methodology, termed plenoptic particle image velocimetry (PIV), was developed and 
demonstrated for the measurement of three-dimensional, three-component velocity fields in 
high-speed turbulent flow fields.  The concept is based on light-field imaging of particles where 
a plenoptic camera is used to measure both the position and angle of light rays scattered by 
particles contained in the flow field.  Tomographic algorithms are applied to plenoptic camera 
data to determine the 3D position of particles contained in the flow field and cross-correlation 
algorithms are used to determine the displacement of particles in two successive images.  A 
prototype camera was designed, built and used to demonstrate the viability of the technique in 
practice.  A synthetic image generation tool was developed to simulate the camera and 
investigate the technique’s accuracy.  Particle positions are found to be accurate within 0.1 mm 
in the lateral directions and within 0.3 mm in the depth direction for a volume with dimensions 
30 mm x 20 mm x 20 mm.  Demonstration experiments included 3D velocity measurements of a 
turbulent boundary layer formed on a wind tunnel wall and a heated, supersonic axisymmetric 
jet.   

Plenoptic PIV’s chief advantages are: 

• Single, Compact Camera – Plenoptic PIV only requires a single camera with a small form 
factor that is virtually identical to that of conventional PIV systems.  As such, plenoptic 
PIV can be used in facilities where optical access and nearby floor space is limited (e.g. 
gas turbine flows, combustors, pressurized flow facilities, etc.).   This is in contrast to 
tomo-PIV, which generally requires 4 or more cameras spread over a fairly large 
baseline that prevents its application in space and optical access restricted 
environments.   

• Easy to set-up and calibrate – Calibration of a plenoptic camera is a fairly simple 
procedure that involves imaging a white background with the main lens aperture set to  
a minimum size and imaging a ruler to determine nominal magnification.  Multi camera 
systems, on the other hand, require a rigorous and complex calibration procedure in 
order to align and register the images produced by different cameras viewing the scene 
from different positions.  Experience has shown that plenoptic PIV can be set-up to 
acquire data in a short period of time. 

• Economical – The cost of a plenoptic PIV system is expected to be only slightly increased 
over that of a conventional PIV system, of which hundreds of systems have already been 
installed around the world. 

The main shortcoming of the present work are two-fold: 

• Limited spatial resolution – The ability to acquire 3D data about the flow comes with the 
tradeoff of reduced spatial resolution.   This is directly tied to the concept of the 
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plenoptic camera where a microlens array is used to sample the angular content of the 
light-field and record it on the pixels located behind the microlens array. 

• Computational Expense – The current implementation of the MART algorithm for 
volumetric reconstruction of particle fields is computationally intense, requiring on the 
order of several hours per reconstructed image. 

Taken together, the future of plenoptic PIV appears to be very bright.  The ability to acquire 3D 
velocity data from a compact and relatively inexpensive camera with minimal optical access 
cannot be matched by any other existing diagnostics.  As such, plenoptic PIV is expected to find 
utility in a wide variety of applications.  In addition, the main shortcomings of plenoptic PIV are 
only expected to improve with time.  In particular, the resolution of image sensors continues to 
grow and is not currently constrained by technical capability, but rather, by consumer demand.  
As plenoptic cameras grow in popularity (e.g. Lytro), higher resolution sensors are expected to 
become available.  In fact, the PI is currently constructing a new plenoptic camera (via a DURIP 
grant jointly funded with Florida State University) based on a 29 megapixel image sensor.  
Computationally, the seeds for the development of fast, FFT based deconvolution algorithms 
was outlined here.  Combined with advances in GPU programming and clusters, reconstruction 
algorithms are expected to be reduced to the order of minutes or less per image such that large 
sets of data can be collected and analyzed in a short period of time. 

Lastly, plenoptic imaging also holds tremendous potential for development of 3D variants of 
other flow diagnostics, such as 3D background oriented schlieren, 3D laser induced 
fluorescence and 3D photogrammetry.  This ability is due to the fact that plenoptic camera 
provide a dense sampling of the angular space of a light-field in contrast to multi-camera 
techniques, which generally are characterized as a sparse sampling of the angular space.  For 
example, tomo-PIV is capable of measurements of particle fields as particles are sparsely 
located in space; however, the multi-camera tomo-PIV system is not capable of generating 
‘photographs’ with new focal planes or perspectives.   

Overall, the future work of the PI is expected to focus on: 

• Continued refinement of plenoptic PIV for improved resolution and accuracy. 
• Development of high repetition rate plenoptic PIV systems for time-resolved 3D flow 

measurements. 
• Application of plenoptic PIV to various flow fields. 
• Extension of plenoptic imaging to 3D versions of other flow diagnostics. 
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X. Publications 
The following publications resulted from the present work and provide more details about the 
work performed as part of this grant.  They are all publically available and can be furnished 
upon request. 

A. Theses 
• Fahringer, T., “Volumetric particle image velocimetry with a plenoptic camera”, M.S. 

Thesis, under preparation for completion in 2013. 
• Lynch, K., “Development of a 3-D Fluid Velocimetry Technique based on Light Field 

Imaging”, M.S. Thesis, Auburn University, 2011. 

B. Journal Publications 
• Fahringer, T., Lynch, K. and Thurow, B. “Plenoptic Particle Image Velocimetry,” submitted to 

Measurement Science and Technology, November 2013 
 

C. Conference Papers & Other Publications 
• Thurow, B. and Fahringer, T., “Recent development of volumetric PIV with a plenoptic 

camera,” Proceedings of the 10th International Symposium on Particle Image 
Velocimetry, Delft, The Netherlands, July 1-3, 2013. 

• Fahringer, T. and Thurow, B., “The effect of grid resolution on the accuracy of 
tomographic reconstruction using a plenoptic camera”,  AIAA Paper 2013-0039, 51st 
AIAA Aerospace Sciences Meeting, Grapevine, TX, January 2013 

• Melnick, M.B., Thurow, B., Fahringer, T. and Brock, B., “Experimental investigation of 
three-dimensional structures in an adverse pressure gradient turbulent boundary layer”,  
AIAA Paper 2012-2850, 42nd AIAA Fluid Dynamics Conference, New Orleans, LA, June 
2012 

• Fahringer, T. and Thurow, B., “Tomographic reconstruction of a 3-D flow field using a 
plenoptic camera,” AIAA Paper 2012-2826, 42nd AIAA Fluid Dynamics Conference, New 
Orleans, LA, June 2012 

• Lynch, K., Fahringer, T., and Thurow, B., “Three-dimensional particle image velocimetry 
using a plenoptic camera,” AIAA Paper 2012-1056, 50th AIAA Aerospace Sciences 
Meetings, Nashville, TN, January 2012. 

• Lynch, K. and Thurow, B., “Preliminary Development of a 3-D, 3-C PIV Technique using 
Light Field Imaging,” AIAA Paper 2011-3729, 41st AIAA Fluid Dynamics Conference, 
Honolulu, HI, June 2011. 

 

 

69 
 



 

 

XI. References 
 

1. Arroyo, M.P. and C.A. Greated, Stereoscopic Particle Image Velocimetry. Measurement 
Science & Technology, 1991. 2(12): p. 1181-1186. 

2. Kahler, C.J. and J. Kompenhans, Fundamentals of multiple plane stereo particle image 
velocimetry. Experiments in Fluids, 2000. 29(7): p. S70-S77. 

3. Brucker, C., D. Hess, and J. Kitzhofer, Single-view volumetric PIV via high-resolution 
scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM). 
Measurement Science & Technology, 2013. 24(2): p. 024001. 

4. Lynch, K. and B.S. Thurow, Three-Dimensional Flow Visualization Using a Pulse Burst 
Laser System. 2009: American Institute of Aeronautics and Astronautics, 1801 Alexander 
Bell Dr., Suite 500 Reston VA 20191-4344 USA. 

5. Thurow, B., N.B. Jiang, and W. Lempert, Review of ultra-high repetition rate laser 
diagnostics for fluid dynamic measurements. Measurement Science & Technology, 2013. 
24(1): p. 012002. 

6. Pereira, F., et al., Defocusing digital particle image velocimetry: a 3-component 3-
dimensional DPIV measurement technique. Application to bubbly flows. Experiments in 
Fluids, 2000. 29(1): p. S78-S84. 

7. Hinsch, K.D., Holographic particle image velocimetry. Measurement Science & 
Technology, 2002. 13(7): p. R61-R72. 

8. Herrmann, S.F. and K.D. Hinsch, Light-in-flight holographic particle image velocimetry for 
wind-tunnel applications. Measurement Science & Technology, 2004. 15(4): p. 613-621. 

9. Katz, J. and J. Sheng, Applications of Holography in Fluid Mechanics and Particle 
Dynamics. Annual Review of Fluid Mechanics, 2010. 42(1): p. 531-555. 

10. Trolinger, J.D., M. Rottenkolber, and F. Elandaloussi, Development and application of 
holographic particle image velocimetry techniques for microgravity applications. 
Measurement Science & Technology, 1997. 8(12): p. 1573-1583. 

11. Elsinga, G.E., et al., Tomographic particle image velocimetry. Experiments in Fluids, 
2006. 41(6): p. 933-947. 

12. Scarano, F., Tomographic PIV: principles and practice. Measurement Science & 
Technology, 2013. 24(1): p. 012001. 

13. Belden, J., et al., Three-dimensional synthetic aperture particle image velocimetry. 
Measurement Science & Technology, 2010. 21(12). 

14. Schroder, A., et al., Investigation of a turbulent spot and a tripped turbulent boundary 
layer flow using time-resolved tomographic PIV. Experiments in Fluids, 2008. 44(2): p. 
305-316. 

15. Scarano, F. and C. Poelma, Three-dimensional vorticity patterns of cylinder wakes. 
Experiments in Fluids, 2009. 47(1): p. 69-83. 

70 
 



16. Humble, R.A., et al., Three-dimensional instantaneous structure of a shock 
wave/turbulent boundary layer interaction. Journal of Fluid Mechanics, 2009. 622: p. 33-
62. 

17. Violato, D. and F. Scarano, Three-dimensional vortex analysis and aeroacoustic source 
characterization of jet core breakdown. Physics of Fluids, 2013. 25(1): p. 015112. 

18. Violato, D. and F. Scarano, Three-dimensional evolution of flow structures in transitional 
circular and chevron jets. Physics of Fluids, 2011. 23(12). 

19. Adelson, E.H. and J.R. Bergen, The plenoptic function and the elements of early vision. 
Computational models of visual processing, 1991. 91(1): p. 3-20. 

20. Adelson, E.H. and J.Y.A. Wang, Single Lens Stereo with a Plenoptic Camera. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 1992. 14(2): p. 99-106. 

21. Levoy, M., Light fields and computational imaging. Computer, 2006. 39(8): p. 46-+. 
22. Levoy, M. The digital Michelangelo project. in 3-D Digital Imaging and Modeling, 1999. 

Proceedings. Second International Conference on. 1999. 
23. Levoy, M., et al., Light field microscopy. ACM Transactions on Graphics, 2006. 25(3): p. 

924-934. 
24. Ng, R., et al., Light Field Photography with a Hand-Held Plenoptic Camera, 2005. 
25. Georgiev, T. New results on the Plenoptic 2.0 camera. in Signals, Systems and 

Computers, 2009 Conference Record of the Forty-Third Asilomar Conference on. 2009. 
26. Georgiev, T.I., C., Light Field Camera Design for Integral View Photography, A.S.T. 

Report, Editor 2006. 
27. Lumsdaine, A. and T. Georgiev. The focused plenoptic camera. in Computational 

Photography (ICCP), 2009 IEEE International Conference on. 2009. 
28. Lippmann, G., Epreuves reversibles donnant la sensation du relief. J. Phys. Theor. Appl., 

1908. 7(1): p. 821-825. 
29. Wilburn, B., et al., High performance imaging using large camera arrays, in ACM 

SIGGRAPH 2005 Papers2005, ACM: Los Angeles, California. p. 765-776. 
30. Gerrard, A. and J.M. Burch, Introduction to matrix methods in optics. 2012: Courier 

Dover Publications. 
31. Lynch, K., Development of a 3-D Fluid Velocimetry Technique based on Light Field 

Imaging, in Aerospace Engineering2011, Auburn University. 
32. Herman, G.T. and A. Lent, Iterative reconstruction algorithms. Comput Biol Med, 1976. 

6(4): p. 273-94. 
33. Adrian, R.J.a.W., Jerry, Particle Image Veolcimetry. 2011, New York, New York: 

Cambridge University Press. 
34. Scarano, F. and M.L. Riethmuller, Advances in iterative multigrid PIV image processing. 

Experiments in Fluids, 2000. 29(7): p. S51-S60. 
35. Melnick, M., et al., Experimental Investigation of Three-Dimensional Structures in an 

Adverse Pressure Gradient Turbulent Boundary Layer, in 42nd AIAA Fluid Dynamics 
Conference2012: New Orleans, LA. 

36. Williams, C.S. and O.A. Becklund, Introduction to the optical transfer function. 1989: 
Wiley New York etc. 

37. Ng, R. Fourier slice photography. in ACM Transactions on Graphics (TOG). 2005. ACM. 

71 
 



38. Bracewell, R.N., Strip integration in radio astronomy. Australian Journal of Physics, 1956. 
9(2): p. 198-217. 

39. Macovski, A., Medical imaging systems. Vol. 20. 1983: Prentice-Hall Englewood Cliffs, NJ. 
40. Nishimura, D.G., Principles of magnetic resonance imaging. 1996: Stanford University. 
41. Deans, S.R., The Radon transform and some of its applications. 2007: DoverPublications. 

com. 
42. Averbuch, A. and Y. Shkolnisky, 3D Fourier based discrete Radon transform. Applied and 

Computational Harmonic Analysis, 2003. 15(1): p. 33-69. 
43. Chen, G.-H., S. Leng, and C.A. Mistretta, A novel extension of the parallel-beam 

projection-slice theorem to divergent fan-beam and cone-beam projections. Medical 
physics, 2005. 32: p. 654. 

44. Liang, Z.-P. and D.C. Munson Jr, Partial Radon transforms. Image Processing, IEEE 
Transactions on, 1997. 6(10): p. 1467-1469. 

 

 

72 
 


	Abstract
	I. Introduction
	A. Current 3D PIV techniques
	B. Light Field Imaging

	II. The Plenoptic Camera
	A. Prototype Camera

	III. Light Field Rendering
	A. Two-plane parameterization
	B. Building the Light Field
	C. Computational Refocusing
	D. Perspective Shift

	IV. Synthetic Image Generation
	A. Overview
	B. 1D Simulations
	C. 2D Simulations

	V. Tomographic Reconstruction
	A. Basic Concept
	B. Calculation of Weighting Function
	C. Implementation & Computational Considerations
	D. Sample Reconstruction Results

	VI. Experiments with Synthetic Images
	A. Single Particle Reconstructions
	B. Cross-correlation Algorithm
	C. Uniform Flow Field
	D. Oseen Vortex

	VII. Experimental Assessment
	A. Turbulent Boundary Layer on a Wind Tunnel Wall
	B. Heated, Supersonic Jet

	VIII. Frequency-Domain Deconvolution-Based Volume Reconstruction
	A. Overview
	B. Imaging Model
	C. Frequency-Domain Deconvolution
	D. Deconvolution Applied to Simulated Plenoptic Data
	E. Artifacts and Improvements
	1. Banding in the object image response
	2. PSF Asymmetry

	F. 3-D Fourier Slice Refocusing
	G. 2.4 Iterative Algorithm
	1. Iterative Gradient Descent Applied to Plenoptic Imaging

	H. Fourier Projection-Slice Theorem
	1. 2-D/3-D of the Fourier Projection-Slice Theorem

	I. Future Work
	J.

	IX. Conclusions & Future Work
	X. Publications
	A. Theses
	B. Journal Publications
	C. Conference Papers & Other Publications

	XI. References

	1 REPORT DATE DDMMYYYY: 27-11-2013
	2 REPORT TYPE: Final Performance Report
	3 DATES COVERED From  To: September 1, 2010 - August 31, 2013
	4 TITLE AND SUBTITLE: Development of a Compact & Easy-to-Use 3-D Camera for High Speed Turbulent Flow Fields
	5a CONTRACT NUMBER: 
	5b GRANT NUMBER: FA9550-10-1-0476
	5c PROGRAM ELEMENT NUMBER: 
	6 AUTHORS: Thurow, Brian, S.
	5d PROJECT NUMBER: 
	5e TASK NUMBER: 
	5f WORK UNIT NUMBER: 
	7 PERFORMING ORGANIZATION NAMES AND ADDRESSES: Auburn University
107 Samford Hall
Auburn, AL 33849
	8 PERFORMING ORGANIZATION REPORT NUMBER: OSP# 2229-10
	9 SPONSORING  MONITORING AGENCY NAMES AND ADDRESSES: Air Force Office of Scientific Research
875 N. Randolph St, Room 3112
Arlington, VA  22203
	10 SPONSORMONITORS ACRONYMS: AFOSR
	11 SPONSORMONITORS REPORT NUMBERS: 
	12 DISTRIBUTION  AVAILABILITY STATEMENT: Approved for Public Release
	13 SUPPLEMENTARY NOTES: 
	14 ABSTRACT: A methodology, termed plenoptic particle image velocimetry (PIV), was developed and demonstrated for the measurement of three-dimensional, three-component velocity fields in high-speed turbulent flow fields.  The concept is based on light-field imaging of particles where a plenoptic camera is used to measure both the position and angle of light rays scattered by particles contained in the flow field.  Tomographic algorithms are applied to plenoptic camera data to determine the 3D position of particles contained in the flow field and cross-correlation algorithms are used to determine the displacement of particles in two successive images.  A prototype camera was designed, built and used to demonstrate the viability of the technique in practice.  A synthetic image generation tool was developed to simulate the camera and investigate the technique’s accuracy.  Demonstration experiments included 3D velocity measurements of a turbulent boundary layer formed on a wind tunnel wall and a heated, supersonic axisymmetric jet.  Overall, plenoptic PIV is shown to be a viable 3D flow measurement technique with its main strengths being its compact form factor, simple experimental arrangement, limited need for optical access and overall ease of use.
	15 SUBJECT TERMS: Light-field imaging, plenoptic cameras, 3D flow visualization, 3D particle image velocimetry, instrumentation, laser diagnostics
	16 SECURITY CLASSIFICATION OF: 
	a REPORT: U
	b ABSTRACT: U
	c THIS PAGE: U
	17 LIMITATION OF ABSTRACT: UU
	18 NUMBER OF PAGES: 
	19a NAME OF RESPONSIBLE PERSON: Brian Thurow
	19b TELEPHONE NUMBER include area code: 334-844-6827


